
Distributed Device
Management for IoT

In action with Eclipse Leshan,
Eclipse Wakaama and OMA-
LWM2M

Speakers:

 BERLEMONT Samuel

 MICHE Arnaud

Orange Labs

IoT Research Domain

19/02/2019 Eclipse IoT Days, Grenoble

2 Externe Orange

1. Device Management?

2. Standards and best practices

3. DM for IoT, a new paradigm

4. The Future of DM: a multi-server architecture

5. Next Steps

Outline

3 Externe Orange

Device
Management… ?

4 Externe Orange

4 categories of operations

Tracking

Maintenance Assistance

Provisioning

Security

• Error and log
collection for analysis

• Firmware update

• Remote service activation
and configuration

• Configuration visualization
• Diagnostics
• Remote actions (reboot…)

5 Externe Orange

Standards and
Best Practices

6 Externe Orange

CPE WAN Management Protocol
v1.4, Issue: 1 amendement 6

Centralized
Auto-Configuration
Server

Data models

RPC Methods
device / server

(HTTP/SOAP)

7 Externe Orange

User Services Platform
V1.0

Multi-controller
 architecture

Data models w/ methods
 RESTful
 Full discovery

Service elements / Proxies

Start of Open Source activities

8 Externe Orange

Multi-server
 architecture

Data models w/ methods
 RESTful
 Shared models

Service objects (OMNA, IPSO) / Proxies

Dynamic ecosystem

• Open Source implementations (Wakaama, Leshan, …)

OMA Lightweight M2M

9 Externe Orange

Bootstrapping

Device

Configuration

Device

Management

Firmware

Update

Fault

Management

Service

Enablement

(Application)

Configuration

& Control

Reporting

SAS – OMA Lightweight M2M (LwM2M) Overview – 12/2016

OMA Lightweight M2M :
Device Management & Service Enablement Standard for IoT

10 Externe Orange

DM for IoT, a new
paradigm

11 Externe Orange

IoT DM challenges

• Heterogeneity

 life-cycle profiles

 DM features

• Security

• New architectures

 DM/service convergence

 Multi-protocol management

 Softwarization : NFV, SDN

• Scalability

12 Externe Orange

The impact on DM solutions

Device profiles

Requirements

Corresponding

DM/SM protocol

Multiple relevant
Standards

&
Proprietary
protocols

13 Externe Orange

The impact on DM solutions

Multi-protocol DM solution

Integration of additional DM servers

Integration of non-DM-enabled devices

Distributed Device
Management for IoT
In action with Eclipse Leshan, Eclipse Wakaama and OMA-LWM2M

Imagined by the research team working for
Orange Labs IoT Research Domain

« Under the hood »

Who am I ?
Arnaud MICHÉ

Software developer at OBS SA (subsidiary of Orange SA)

My job on this project :
Implement prototypes in order to evaluate the ideas and theories envisionned
by the research team.

Contents
• Why Leshan ?
• How we used it
• Proxies

• How a proxy work
• Changes in leshan-client-demo

• Servers
• How a server works
• Changes in leshan-server-cluster

• Wakaama on ESP32
• How it is integrated in the demonstration
• Near future work

Why ?

1. Major goals
Decentralized
Multi server

Lwm2m seems
To be a good

candidate for this
job

Lwm2m seems
To be a good

candidate for this
job

2. Need of an implementation for our experiments

3. Leshan is mature, in active development and provides
good examples ...

We can start
Our prototype
With confidence

We can start
Our prototype
With confidence

Contents
• Why Leshan ?
• How we used it
• Proxies
• Servers
• Wakaama on ESP32
• How it is integrated in the demonstration
• Near future work

How we use
 Disclaimer:

 The code base used for our prototype has been cloned in september 2017
 and did not follow the changes of upstream developments since this date.

2. As a proxy for connecting constrained devices to our DM
network.

1. As a server of Device Management (DM) ready to be
clustered in our network.

v1

How we use

3. For now, only Firmware Upgrade is implemented in the
Proof-of-Concept.

v2

Contents
• Why Leshan ?
• How we used it
• Proxies
• Servers
• Wakaama on ESP32
• How it is integrated in the demonstration
• Near future work

Proxies

Non-LWM2M but
Wifi or BT

Non-LWM2M but
Wifi or BT LWM2M serverLWM2M server

• Based on leshan-client-demo package provided with Leshan
sources

• Addition of an Avahi service for device over TCP (here, via WiFi)
• Addition of a service polling serial connections for Bluetooth device

connected via an USB dongle
• Process wrapper for launching tools for flashing device

How a proxy manager works

g-esp32-<id> g-proxy-<id>

g-airboard-<id>

serial

New lwm2m client :
g-proxy-<id>/g-esp32-<id>

New lwm2m client :
g-proxy-<id>/g-airboard-<id>

Changes on leshan-client-demo

MyDevice

BaseInstanceEnabler

From the package
leshan.client.resource

In order to address several types of devices.
Here, BT and WiFi devices

AbstractDevice

BaseInstanceEnabler

SerialDevice AvahiDevice

Changes on leshan-client-demo

AvahiMonitor

In order to connect WiFi and BT devices

BlunoMonitor

libavahi4j

TCP connection
monitoring service

WiFi connection

Serial connection
monitoring service

USB dongle connection

LWM2M client creation
LWM2M registration

Changes on leshan-client-demo
In order to perform the firmware update (1/2)

JavaExecutor

Executor

LoaderExecutor ArduinoExecutor
AvrLoaderExecutor

A kind of Process wrapper

Execute a JAR

Launch the tool for flashing a
binary file to the esp32

Launch an Arduino build
for a given INO file
(available for a zipped
INO project, also)

Launch avrdude for flashing a
binary file on an Avr device

Changes on leshan-client-demo

MyFirmwareUpdate

FirmwareDescriptor

• The LWM2M object « Firmware »
• It is also in charge of downloading the firmware

and launch the execution of the flash tool (by
intermediate of the Executors)

• It holds informations necessary to the firmware
update :
 Version of software
 url where to download the file
 format of the file and the type of the board

enabling the choice of the right executor for
flashing the device.

In order to perform the firmware update (2/2)

Changes on leshan-client-demo
In order to allow multiserver (1/2)

private static String serverURI_1 = "coap://192.168.0.100:5683";
private static String serverURI_2 = "coap://192.168.0.101:5683";

Declaration of two server URLs inside LeshanClientDemo.java :
1.

Security sec1 = Security.noSec(serverURI_1, 123);
Security sec2 = Security.noSec(serverURI_2, 234);

Server serv1 = new Server(123, 30, BindingMode.U, false);
Server serv2 = new Server(234, 30, BindingMode.U, false);

initializer.setInstancesForObject(SECURITY, sec1, sec2);
initializer.setInstancesForObject(SERVER, serv1, serv2);

2.

Changes on leshan-client-demo
In order to allow multiserver (2/2)

Some changes in LWM2M Registration related classes of Leshan core :

2. Inside leshan-client-
cf/src/main/java/org/eclipse/leshan/client/californium/LeshanClient.java

Added a function getRegistrationId which calls the getRegistrationId of the RegistrationEngine with
the server informations. Server informations passed in parameters enable to retrieve the registration Id
of a device giving its server Id.

1. Inside leshan-master_bluno/leshan-client-
core/src/main/java/org/eclipse/leshan/client/servers/RegistrationEngine.java

Changed data structure which holds the registration ID for one client from a variable storing the reg_id
to a hash map which holds several couples (server_uri, reg_id) as a client can be registered to more
than one server.

Contents
• Why Leshan ?
• How we used it
• Proxies
• Servers
• Wakaama on ESP32
• How it is integrated in the demonstration
• Near future work

Servers

• Based on leshan-server-cluster package provided with Leshan
sources

• Manage registered devices
• Relying on Redis PubSub
• Reg IDs stored in Redis Key/Value data base

FirmwareUpdate

GetParameter

SetParameter

How a server works

Redis Pub/Sub

Redis DB

Server start !

Store server Id

Client registered !

Store regId and
registration infos

Same path for update and
deregistration of the
device.

Same path for the
server stop event.
Note: a hook has been
added for notifying the
stop of the server.

How a server works

Redis Pub/Sub

Redis DB

FirmwareUpdate
on device <Id> !

Launch Update
with
<firmware_url> !

Get the IP address of the
device from its regId

Server can use the Pub/Sub bus to
notify the progress of operations

Changes on leshan-server-cluster
In order to allow the detection of arrivals and exits of servers in the cluster

Creation of the class leshan-server-
cluster/src/main/java/org/eclipse/leshan/server/cluster/RedisServerEventPublisher.j
ava : RedisServerEventPublisher

• Publish start/stop event of a server
• Store Server ID inside database

Redis DB

{ LESHAN_SERVER_ID:<server_id> ; (<server_addr>, <secured_server_addr>) }

Creation of a new key/value in the store :

Changes on leshan-server-cluster
In order to allow multiserver

Modification of the data structure stored in Redis Database :

Redis DB

{ REG:EP:<endpoint> ; <serialized_registration_data> }

Redis DB

{
REG:EP:<endpoint> ;
[<server_id> :<serialized_registration_da
ta>,
...]
}

And token handlers hold now, the regID in addition of endpoint name :
Before token handlers were EP#UID#endpoint and now it is EP#UID#regId#endpoint

Finally following classes have been impacted :
• leshan-server-cluster/src/main/java/org/eclipse/leshan/server/cluster/LeshanClusterServer.java
• leshan-server-

cluster/src/main/java/org/eclipse/leshan/server/cluster/RedisRegistrationStore.java
• leshan-server-

cluster/src/main/java/org/eclipse/leshan/server/cluster/RedisRequestResponseHandler.java
• leshan-server-cluster/src/main/java/org/eclipse/leshan/server/cluster/RedisTokenHandler.java

Contents
• Why Leshan ?
• How we used it
• Proxies
• Servers
• Wakaama on ESP32
• How it is integrated in the demonstration
• Near future work

Wakaama on ESP32
In order to allow firmware update on esp32 without the help of the proxy

Based on wakaama client example
distributed with Wakaama sources

Using the ESP32 SDK (with
FreeRTOS)

HTTP Downloader

RGB LED controller

OTA

To download the firmware on the board

To light on/off an RGB LED

To process the firmware update

Contents
• Why Leshan ?
• How we used it
• Proxies
• Servers
• Wakaama on ESP32
• How it is integrated in the demonstration
• Near future work

How it is integrated in the demonstration

DM Server

Bus PUB/SUB

DM Server

Proxy DeviceDevice LWM2M compatible

Wifi (detected using Avahi)
Ou BT (via serial stack of Linux)

Redis connector

DB

Socket-io (/hmi)

Socket-io (/leshan)

DM Network
NetworkX

dm_network.json

firmwares

Contents
• Why Leshan ?
• How we used it
• Proxies

• How a proxy work
• Changes in leshan-client-demo

• Servers
• How a server works
• Changes in leshan-server-cluster

• Wakaama on ESP32
• How it is integrated in the demonstration
• Near future work

Near future work

● Using the acquired experience to clean the architecture (micro-services?)
● Implement a generic layer to address other protocols (not only LWM2M)
● Synchronize with upstream Leshan code.

Thanks

14 Externe Orange

Multi-server demo
 architecture

15 Externe Orange

ESP32 Airboard

ESP32

DM API

16 Externe Orange

ESP32 Airboard

DM
Dashboard

Message bus

ESP32

DM API

17 Externe Orange

DM Server 1

DM Server API

ESP32

DM Server 2

DM Server API

Airboard

DM
Dashboard

Message bus

ESP32

DM API

18 Externe Orange

Proxy
Manager

DM Server 1

DM Server API

ESP32

DM Server 2

DM Server API

Airboard

DM
Dashboard

Message bus

Proxy
Manager

ESP32

DM API

19 Externe Orange

Proxy
Manager

DM Server 1

DM Server API

ESP32

DM Server 2

DM Server API

Airboard

DM
Dashboard

Message bus

Proxy
Manager

DM API

Proxy
Airboard

ESP32

DM API

20 Externe Orange

Proxy
Manager

DM Server 1

DM Server API

ESP32

DM Server 2

DM Server API

Airboard

DM
Dashboard

DM API

Proxy
ESP32

Message bus

Proxy
Manager

DM API

Proxy
ESP32

DM API

Proxy
Airboard

ESP32

DM API

21 Externe Orange

Proxy
Manager

DM Server 1

DM Server API

ESP32

DM Server 2

DM Server API

Airboard

DM
Dashboard

DM API

Proxy
ESP32

Message bus

Proxy
Manager

DM API

Proxy
ESP32

DM API

Proxy
Airboard

ESP32

DM API

22 Externe Orange

Proxy
Manager

DM Server 1

DM Server API

ESP32

DM Server 2

DM Server API

Airboard

DM
Dashboard

DM API

Proxy
ESP32

Message bus

Proxy
Manager

DM API

Proxy
ESP32

DM API

Proxy
Airboard

ESP32

DM API

23 Externe Orange

Time for the demo!

24 Externe Orange

New solutions
• Multi-server, multi-protocol architecture

• Integration of multiple and new DM servers

• A need for abstraction

Next Steps with Eclipse IoT
• Contributions

• Leshan

• Wakaama + ESP32

• Study of integration

• Hono

• hawkBit

Conclusion

Thank you

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29

