
Using the Swordfish Git repository with Eclipse

Motivation

Quite a few of the current contributors to the Swordfish project do not have committer status in the
Swordfish Eclipse project. It was important to find a way to let them contribute in a controlled way
in a repository that is available to the public. This repository should be

• writable for anyone who want to collaborate

• easy to synchronize with the official Eclipse SVN repository

• reliably about the creation of patches (we had problems with patches created / applied with
Eclipse based on the SVN repository)

• allow for a CI build to ensure consistent & stable patches

Solution

The idea is to use a free public repository hosted at github.com that is mirrored from the Eclipse
SVN. Collaborators can either fork this and create patches or (in case of Sopera employees and
partners) get direct access to the mirror repository.

Prerequisites

To give a short checklist, this is what you need to use Git:

• The Git command line tools

• The EGit Eclipse plugin

• An account with a public key at http://www.github.com

• To be added as collaborator at Olivers repository at
http://github.com/owolf/eclipse-swordfish.git

How to use Git

In a blog post on http://swordfishing.wordpress.com we saw how to access the Swordfish Git
repository using Git from command line. Now that may not be everybody's cup of tea. Some people
(including me) are not so happy when forced to do everything from command line. I don't like it
with CVS or SVN either.

Fortunately there is the “EGit” plugin for Eclipse (http://github.com/guides/using-the-egit-eclipse-
plugin-with-github) – including a nice tutorial. The plugin is still in an early stage, so we'll need to
install the command line tools anyway.

The next thing we need is an account on Github.com. Most probably we'll want to add a SSH public
key to our account.

Finally Oliver to add we as collaborator (you'll need that to be able to push our updates to Olivers
repository).

Now we can import the Swordfish Git (located at git://github.com/owolf/eclipse-swordfish.git), we
can just import it into Eclipse using “Import ...”

http://www.github.com/
http://github.com/owolf/eclipse-swordfish.git

Then we select Git as source and enter the Swordfish Git URI (located at
git://github.com/owolf/eclipse-swordfish.git) as source.

We press the “Next >” button.

Select destination and initial branch and press finish.

Sooner or later the repository cloning will finish ...

Then we need to go to a terminal window to create the Eclipse projects and import them as existing
projects (as shown in Renats post at http://swordfishing.wordpress.com/2009/02/03/first-steps/).

Afterwards it's easiest to create an Eclipse project file in the root project (just copy the one from the
API project, change the name inside), import it and share it as a Git repository. To do that you right-
click on the eclipse-swordfish project and choose “Team / Share Project...” :

Press “Finish” ...

Now the package explorer indicates that we are using Git:

Some things will be a bit different from working with CVS or SVN. In these systems we are clearly
a client who just received a working copy of the central repository. When we imported from the
remote repository, we have created a standalone local repository of Olivers remote repository
residing on github.com. So working with that requires slightly different steps.

To make it a bit more colourful, let's have a look at some typical scenarios:

• committing a non-conflicting fix

• committing a fix that causes conflicts

• resetting the local repository clone to the state of its origin

Committing a non-conflicting fix

Let's make a tiny change on the FilterStrategy interface:

After saving the change it has to be committed to the local Git repository first. So we choose the
Team/Commit on the eclipse-swordfish root project:

We press “Commit”, afterwards we right-click on the root again and select “Team / Show in
Resource History”:

Ok, the change is done locally. Now our remote master has to be updated. In Git the command to do
this is “PUSH”. So we select “Push to ...” from the Team context menu (Note that on the following
screenshots I am using a clone of a local Git repository – if you push to Olivers repo, you'll
certainly see a real remote URI):

Now we'll have fun with this dialog. For a first-timer it's hard to get.

Currently we are on the local master (“master [branch]”), so we simply select this as source. The
remote master will automatically selected and we press “Add spec”:

Note that we should not check the “Force Update” when pushing as it would overwrite the remote
origin with our local one. It may be tempting if there is a conflict, but forcing is only OK for
incoming changes (to overwrite local changes that do not exist in the remote origin).

So when we press “Finish” we get this:

Congratulations – the remote repository has been updated! Now the CI build based on Olivers Git
will be triggered. In the mean time, we can create a patch file that includes our fix (and attach it to a

Bugzilla request. To do that we need a terminal window and use the command line tool. We enter
the eclipse-swordfish directory of our workspace and enter

git log

Now we copy the ID of the previous commit and create the patch file using

git format-patch 914b7b6b62b9eff4d5ee0d98b395f476cb56fce6

Git has created a patch for the commit that happened since this previous one. Let's have a look at
what is inside:

Note that you can go backwards to previous patches as well. Each commit will end up in a separate
patch file.

Committing a fix that causes conflicts

OK, the previous change was pretty simple ... pretty unrealistic also ;-). Let's have a look what
happens if somebody else created a local clone of Olivers repository before we pushed our change
to there. So the change is done and committed to the local Git (note that origin/master is one step
behind us):

OK, so we want to be documentation heroes and push this change to the origin repository:

So somebody was faster – our change is rejected because of a merge conflict. :-(

We need to know what happened on the origin repository and fetch its contents:

So we are able to get the changes:

We can also located them outside Eclipse using git diff origin:

But now we have to leave Eclipse and open a Terminal window to rebase with the origin repository,
because that is not yet supported in the Egit plugin. We enter git rebase origin and Git tries to merge
changes. In our case it fails, because of the conflicting line:

Now contents in our Eclipse editor change:

We resolve the conflict by keeping both changes and save our file:

That done we do not have to commit, but have to (re-) add 1 the changed file to indicate that we have
solved the conflict using

git add
org.eclipse.swordfish.api/src/main/java/org/eclipse/swordfish/api/FilterStrategy
.java

Now the rebase can continue:

git rebase –continue

1 Curious who implemented git add ? Then type git add –help and go to the bottom of the help text ;-)

And having done that, our push will work:

Again we can see that on the terminal window as well using git log:

Resetting the local repository clone to the state of its origin

Suppose we have made some changes that we do not want to push to the origin repository. In that
case we need to go back to the last state of the origin (as we can see below, our local master branch
is 3 commits ahead of the last known state of the origin master branch).

With EGit you will have to get the last changes of the origin and then reset you local branch to the
state of the origin. So right-click on the eclipse-swordfish project and select “Team / Fetch from ...”

Press “Next >” ...

Then “Finish” it:

So there were no changes on the origin since our last fetch command.

Now we can reset our branch to the contents of the origin. We use “Team / Reset To ...”, select the
master branch of the origin repository we just fetched and select the Reset Type “Hard” (overwrite
everything locally!):

No we will have to confirm that we really want to wipe out all local changes (the answer is Yes!)

So when the operation is finished, we see that our local master branch and the remote master branch
are at the same state:

	Using the Swordfish Git repository with Eclipse
	Motivation
	Solution
	Prerequisites
	How to use Git
	Committing a non-conflicting fix
	Committing a fix that causes conflicts
	Resetting the local repository clone to the state of its origin

