
Ed Merks
Eclipse Modeling Project Lead

Build and Provision:
Two Sides of the Coin We Love to Hate

8/31/2009 1© Ed Merks | EDL V1.0

• Software artifacts flow from developer to developer

and ultimately to the clients in pipeline fashion
– Each intermediate stage involves provisioning the

developer’s environment and building that environment’s
contents

– The final stage involves provisioning the client’s execution

environment

• The pipeline is fundamental to the smooth flow of

goods from producer to consumer

• All its stage are amenable to automation

The Software Pipeline

8/31/2009 2© Ed Merks | EDL V1.0

• Build is the process of converting source artifacts

into target (typically binary) artifacts

• In order to build we must establish the environment

in which the build operates, i.e., we must
– Provision the source artifacts that are to be built
– Provision the binary artifacts against which to build

• Builds are like the weather
– We want it to be nice

– More often than we’d like, it’s unpredictably horrible
– We love to complain about it

– But is it really beyond our control?

Build

8/31/2009 3© Ed Merks | EDL V1.0

• Provisioning is the process by which source and

binary artifacts are found and retrieved to make

them available for local use

• In order to provision we must establish well known

locations where the artifacts can be found
– Source and binary repositories

• Provisioning is an issue both for developers and for

the clients of what they produce

Provisioning

8/31/2009 4© Ed Merks | EDL V1.0

• Software is becoming increasingly complex
– Modularity helps manage this complexity

– But modules increase the length and therefore fragility of
the software pipeline

– So module dependencies must be carefully managed

The Growth of the Software Pipeline

8/31/2009 5© Ed Merks | EDL V1.0

• A release engineer is the domain expert who specializes

in managing the pipeline
– It’s a thankless job

• When things go wrong, it’s all your fault
• When things go right, you’re completely taken for granted

• It’s considered menial labor, despite the technical challenge

• The release engineering task is often assigned to junior

developers as an entry level task
• High turnover leads to hacked designs

• Change is motivated primarily to address symptoms
• The result is a constant source of recurring problems

Release Engineering

8/31/2009 6© Ed Merks | EDL V1.0

• Release engineering tools and technologies tend to

be of stone age quality

• There is a virtual tower of Babel of scripting

languages
– Let’s use an XML syntax and call it Ant, that will solve all

the problems!

• A generous helping of spit and glue helps keep it all

from falling apart
– Let’s just poke it here and kick it a few times there and

hope it works after that!
– Better yet, let’s use chewing gum and duct tape instead!

Release Engineering Technology

8/31/2009 7© Ed Merks | EDL V1.0

• It’s ironic that builds are always broken because
developers are doing them constantly all day long
just to do their jobs

• A key problem is that the automated build on the
build machine is not the same as the local build
done by the developers

• So there are really two builds
– One that mostly works because the developers use it

constantly and would otherwise sit idle
– One that always breaks because it’s done in some other

apparently more fragile way by someone else

Why Are Builds Always Broken?

8/31/2009 8© Ed Merks | EDL V1.0

• Provisioning the development environment is

tedious and error prone
– The more dependencies, the more tedious and error

prone the problem becomes
– Developers must follow a mysterious poorly documented

golden path to set up everything correctly

– It’s so much work they are understandably reluctant to
repeat the process as often as they should

• So they don’t pick up new dependencies regularly
• And so they don’t notice new upstream problems until

long after they’ve been introduced

Why Are Builds So Hard to Set Up?

8/31/2009 9© Ed Merks | EDL V1.0

• It’s caused by yet another provisioning problem
– In a highly modular system, it’s difficult to ensure that all

the appropriate versions of the modules are installed
– Installing a new module can break other modules

– The environment itself often has differences, e.g., an
inappropriate JVM

Why Does the Output of the Software Pipeline

Fail to Function Properly?

8/31/2009 10© Ed Merks | EDL V1.0

• How do I reproduce a build?
– In open source to be truly open conducive to participation

and contribution it’s important that anyone can reproduce
your builds

• Provisioning is a moving target
– The things we need constantly change, including their

dependencies

• How do we solve these problems?
– Let’s make someone else responsible

– Let’s steer clear of the whole mess

– No! Take responsibility!!

Problems, Problems, and More Problems

8/31/2009 11© Ed Merks | EDL V1.0

• Declarative data is the key
– Describe what’s in a module
– Describe how modules depend on other modules
– Describe what needs to be built rather than detail how to

build it
– Drive the build process directly from the description

• Eclipse declares what’s needed with
– MANIFEST.MF
– plugin.xml/feature.xml
– build.properties

• Much of this information is needed at runtime as
well as at build time

Build Solutions

8/31/2009 12© Ed Merks | EDL V1.0

• Declarative data is the key
– Describe what’s available

– Describe dependencies between them
– Describe where these things are located

• Eclipse describes such things today with
– Project set files for source artifacts

– Installable units (p2) for binary artifacts
– Buckminster provides a more complete provisioning

solution that builds on these

Provision Solutions

8/31/2009 13© Ed Merks | EDL V1.0

• Equinox is Eclipse’s implementation of an OSGi runtime
– A container for bundles with well defined dependencies

• Bundles
– The fundamental modular unit of OSGi
– Contains code
– Describes dependencies on bundles or packages

• Plug-ins
– Eclipse bundles that can define extension points or contribute

extensions to extension points
• Features

– A grouping of plugins that are expected to be installed together
• Fragments

– A special type of bundle that augments some host plug-in
• Product

– A top level grouping mechanism

Equinox and OSGi

8/31/2009 14© Ed Merks | EDL V1.0

• Eclipse’s provisioning technology

• Installable Units are the central concept
– Identified by namespace and version

p2 Installable Units

8/31/2009 15© Ed Merks | EDL V1.0

• Metadata Repositories
– Information about the installable units available

• Artifact Repositories
– The actual contents of the installable units

• Typically they are collocated at a given URI

p2 Repositories

8/31/2009 16© Ed Merks | EDL V1.0

• Installable units are fetched from repositories and

installed into a profile
– Maintains history of what’s been installed

– Supports rollback

p2 Profiles

8/31/2009 17© Ed Merks | EDL V1.0

p2 in Action

8/31/2009 18© Ed Merks | EDL V1.0

Transports Http/Https
File system
Volume

Repositories p2
Update Site

Engine
Eclipse/OSGi
Native/OS

Director

ProfilesRuntimes

Provisioning
operation
requested

Metadata
fetched and
constraints
analyzed

IU install,
uninstall, update
operations Artifact

availability and
mirroring

Mirroring

Data transfer

IUs configured
into runtimes

Profile updated

• Workspace
– A container for a set of projects, i.e., source plug-ins,

source features, and so on
– Typically provisioned from one or more team project set

files that extract the source from a repository

• Target Platform
– A set of plug-ins and features used when building projects

in the workspace and when running the build result in

launched processes

Eclipse’s Development Environment

8/31/2009 19© Ed Merks | EDL V1.0

• Eclipse’s Java-centric tools for developing plug-

ins/bundles
– Manage the classpath based on MANIFEST.MF

dependencies
– Editing support for MANFIEST.MF, plugin.xml,

build.properties

– Generate build.xml ANT scripts for driving headless PDE
build

PDE

8/31/2009 20© Ed Merks | EDL V1.0

• Automated provisioning of Eclipse installations, workspaces,
and target platforms

• Exploits workspace build directly even for

headless/automated builds
• Exploits knowledge about dependencies between modular

units to ensure that the entire dependency closure is
materialized

Buckminster

8/31/2009 21© Ed Merks | EDL V1.0

Buckminster Repository Support

8/31/2009 22© Ed Merks | EDL V1.0

RMAP

Buckminster Materialization

8/31/2009 23© Ed Merks | EDL V1.0

using p2 in 3.5 – UM in earlier

• A proposed incubator project focused on simplifying

the build and assembly process
– http://wiki.eclipse.org/PDE/Incubator/b3/Proposal

• A declarative model-based approach for build

definition and execution that unifies developer

builds and automated builds
– Clear separation between description and execution

– Direct execution of build models

• Expand upon PDE’s declarative data and

Buckminster’s provisioning support

b3

8/31/2009 24© Ed Merks | EDL V1.0

The Eclipse Developer

8/31/2009 25© Ed Merks | EDL V1.0

process

check-out

commit

workspace targetdeveloper

provision

test

The Eclipse Software Pipeline

8/31/2009 26© Ed Merks | EDL V1.0

process

check-out

workspace targetheadless user

provision

aggregate

test

install

• Reuse the information already captured to describe the

contents and dependencies of modular units for use in a

componentized runtime to also drive a streamlined,

robust software build and assembly pipeline

• Reuse modeling technology to describe declaratively all

aspects of the build process

• Reuse the same build infrastructure exercised

continuously by the developers to drive the headless

automated build

• Reuse provisioning technology to drive both

development and deployment

Conclusion: Reuse Technology

8/31/2009 27© Ed Merks | EDL V1.0

• http://download.eclipse.org/downloads/tools/buckminster/doc/BuckyBook.pdf

• http://wiki.eclipse.org/PDE/Incubator/b3/Proposal

References

8/31/2009 28© Ed Merks | EDL V1.0

