
PAPYRUS ROUND-TRIP 

ENGINEERING

Van Cam Pham, Shuai Li, Ansgar Radermacher, Cédric Dumoulin, 

Chokri Mraidha, Rémi Schnekenburger, François Le Fèvre, 

Sébastien Gérard

{first_name}.{last_name}@cea.fr



2/18

Introduction

Round-trip Use-cases and Scenarios

Implementation Technologies

Demo Video

Conclusion and Future Work

CONTENT



3/18

Introduction

Round-trip Use-cases and Scenarios

Implementation Technologies

Demo Video

Conclusion and Future Work

CONTENT



4/18

What is round-trip engineering?

 Related to traditional software engineering disciplines:

 Forward engineering: creating software from specifications

 Reverse engineering: creating specifications from existing software

 Round-trip engineering adds synchronization of existing artifacts 

that evolved concurrently by incrementally updating each artifact to 

reflect changes made to the other artifact

 Round-trip generalizes both forward and reverse engineering

INTRODUCTION

“The ability to automatically maintain the consistency of multiple,

changing software artifacts, in software development

environments/tools, is commonly referred to as round-trip

engineering” [Sendall04]

[Sendall04] S. Sendall and J. Küster. Taming model round-trip engineering. In Proceedings of Workshop on Best Practices for Model-

Driven Software Development, Vancouver, Canada, 2004.



5/18

A real need for round-trip engineering

 Previously, UML-RT runtime code was manually reversed to a 

Papyrus UML model and code was generated

 The task was “long” and “tedious”

 In the mean time model and code evolved concurrently

Papyrus offer for round-trip engineering

 UML modeler and C++ code generator are released…

 …but reverse and incremental update tool are still in development

INTRODUCTION

A real problem of synchronization!

Propose a IDE for C++ round-trip 

engineering




6/18

Introduction

Round-trip Use-cases and Scenarios

Implementation Technologies

Demo Video

Conclusion and Future Work

CONTENT



7/18

ROUND-TRIP USE-CASES AND 

SCENARIOS

User of the Papyrus 

Round-trip IDE

A developer who works 

mostly with models

A developer who works 

mostly with code

New feature in 

Papyrus

Existing feature in 

Papyrus



8/18

ROUND-TRIP USE-CASES AND 

SCENARIOS

Legacy 

code

Model
Generated 

code

1 Reverse to new model + validation

2 Code generation

4 Reverse (Overwrite)

Modified 

code

3
M

o
d

ific
a

tio
n

Initialization step

Scenario 1: only code is modified

(Manual) Validation is needed because we

use some patterns to transform pure C

code (not C++) to an object-oriented model

(e.g. file scope functions, extern variables)



9/18

ROUND-TRIP USE-CASES AND 

SCENARIOS

Legacy 

code

Model
Generated 

code

2 Code generation

4 Code generation

3
M

o
d

ific
a

tio
n

Initialization step

Scenario 2: only model is modified

Modified 

model

1 Reverse to new model + validation



10/18

ROUND-TRIP USE-CASES AND 

SCENARIOS

Legacy 

code

Model
Generated 

code

2 Code generation

4 Merge

3
M

o
d

ific
a

tio
n

Initialization step

Scenario 3: model and code are both modified

Modified 

code

3
M

o
d

ific
a

tio
n

 Several possible strategies

 We propose one based on

comparing manually modified code

with “image of model”

 Image of model = representation of

model as code

Modified 

model

1 Reverse to new model + validation



11/18

ROUND-TRIP USE-CASES AND 

SCENARIOS

Scenario 3.1: merge by creating an image of the model as code

1 Code generation Modified 

code

Image of 

model

Scenario 3.2: merge by creating an image of the code as model

2 Code compare

3 Reverse (merge)

Modified 

model

“Reverse (merge)” is an incremental

update of the model (preserve non-

affected elements)

2 Model compare Modified 

code

Image of 

code

1 Reverse (overwrite)

3 Code generation

(optional: incremental)

Modified 

model



12/18

Introduction

Round-trip Use-cases and Scenarios

Implementation Technologies

Demo Video

Conclusion and Future Work

CONTENT



13/18

ROUND-TRIP USE-CASES AND 

SCENARIOS

Scenario 3.1: merge by creating an image of the model as code

1 Code generation Modified 

code

Image of 

model

Scenario 3.2: merge by creating an image of the code as model

2 Code sync.

3 Reverse (merge)

Modified 

model

2 Model sync. Modified 

code

Image of 

code

1 Reverse (overwrite)

3 Code generation

(optional: incremental)

Modified 

model

EMF Compare

Eclipse

Papyrus Designer + CDT
Papyrus Designer

Papyrus Designer + EMF IncQuery

Papyrus Designer



14/18

ROUND-TRIP USE-CASES AND 

SCENARIOS

Criteria Merge using code Merge using model Winner

UI usability Suited for algorithmic changes Suited for architectural changes Draw

Change detector CDT listener is unreliable and 

not fine-grained

EMF IncQuery is reliable and 

fine-grained

Merge using model

Comparison tool Many mature comparators (but 

basic can be messy)

EMF Compare comparison fine-

grained in Papyrus, needs some 

UI work outside of Papyrus, 

xmi:id limitation needs to be 

leveraged

Merge using code

Overall robustness “Reverse (merge)” operation is 

dependent on code changes 

detector and handling of 

changes, which in the current 

state is error-prone

Incremental code generation is 

based on more reliable EMF 

IncQuery AND it’s optional

Merge using model

Technology 

dependency

CDT EMF technologies Draw

Technology comparison



15/18

Introduction

Round-trip Use-cases and Scenarios

Implementation Technologies

Demo Video

Conclusion and Future Work

CONTENT



16/18

DEMO VIDEO

Video ►

https://youtu.be/sudtoPvvyTA



17/18

Introduction

Round-trip Use-cases and Scenarios

Implementation Technologies

Demo Video

Conclusion and Future Work

CONTENT



18/18

Summary

 Papyrus round-trip engineering proof of concept

 Most limitations are on the implementation side due to technology issues

Current and future work

 Unitary testing and debugging of reverse tool for robustness

 Improvement of code generator

 Test on several real case studies:

 UML-RT runtime

 Diversity

 Embedded applications developed by CEA in C++

 LEGO EV3 C++ library

 Java version (integration of Cédric Dumoulin’s work)

 Research work (thesis of Van Cam Pham): incremental code generation

Roadmap and project

 Target Eclipse Neon M6 milestone (end Q1 2016) for release of round-trip 

features

 European project on this subject being proposed?

CONCLUSION


