
PTP Synchronized Projects:
Future Directions

John Eblen

September 14, 2013

Supporting “Other” Languages

l  Traditionally support C/C++/Fortran
l  Generic sync projects now allows for any

language
l  Additional support for specific languages

commonly used for HPC?
l  If so, which ones?

Main Contenders for HPC

l  Python
l  Eclipse support: PyDev
l  Packages: mpi4py, SciPy, NumPy
l  Example: PyClaw (hyperbolic PDE solver)

l  R
l  Eclipse support: StatET
l  Packages: Rmpi, snow, snowfall
l  Example: pbd-r (Programming with Big Data

in R)
l  Usually C underneath
l  Can be quite difficult to setup

Other Contenders

l  Matlab
-  MPI support, well-known and available
-  Requires a license

l  Java
-  Built-in threading and concurrency support
-  Still has a stigma of being slow

l  Chapel and X10: Still works in progress
l  Perl and Ruby: Not much found...

Four Languages to Watch

l  Clojure: A modern Lisp dialect for the JVM
l  D: C++ successor?
l  Julia: Matlab and R successor?
l  Scala: Java successor?

Python in Parallel

l  Multithreading
-  GIL (Global Interpreter Lock) limitation
-  Only one thread can run interpreter at a time
-  Programs can release GIL
-  NumPy does this for array operations (C = A + B)
-  IO operations also release GIL while waiting

l  Symmetric Multiprocessing (SMP)
-  Avoids GIL by having multiple interpreters
-  Shared memory environment only, though

l  Massive parallelism
-  Mpi4py and several others

R in Parallel

l  No parallelism by default
l  Memory problems
l  Several solutions developed

-  snowfall
-  snow
-  rMPI

Cheap Parallelism

l  Common scenario: Employ a supercomputer
to run a single, non-parallel program on
different data files

l  Difficult to find examples of true, massively
parallel Python and R programs

l  Why?
-  Simple analysis or parsing scripts written by

non-programmers (e.g. scientists)
-  Scripting languages are more common among

non-expert users

Proposal 1

l  Add PTP support for “embarrassingly parallel” programs
l  Option for automatically-generated launcher script
l  Simply another layer

-  mpirun -np 1024 <program> <args>
-  mpirun -np 1024 <launcher> <program> <args>

l  Problem: launcher needs domain knowledge to map
MPI rank to specific arguments

-  Allow launcher script to be editable?
-  Use “job number” variable in arguments?
-  Other?

l  How to reduce?

Proposal 2

l  Support easily running jobs on login nodes
-  Produce input files
-  Reduce results
-  Analyze results

l  Options already discussed
-  Improve “Run as” menu option
-  Remote command line

l  Generic support for different build systems

Build System Support

l  Easier running of remote jobs is first step
l  Intercept build requests
l  Need automatic detection or project type
l  Provide options somehow (e.g. cmake in-

source build vs. out-of-source build)

CMake Support

l  Simplest approach
-  Run CMake to generate make files

l  Eclipse CDT4 Generator creates Eclipse CDT
project from CMake projects

l  Roland's idea: Enhance to create CDT build
configurations

-  Provides a way to build project
-  Could provide discovery information!

l  Could we tie this into Eclipse?
l  General idea of creating build configurations from a

build system?

Other Enhancements

l  Easier setup, creation of synchronized
projects

l  Allow it to be a general Eclipse facility
l  Remote indexing for specific languages
l  Remote debugging for specific languages

References and Acknowledgments

l  Parallel programming with numpy and scipy.
http://wiki.scipy.org/ParallelProgramming

l  Ryan R. Rosario. July 27, 2010. Taking R to
the Limit (High Performance Computing in
R).

l  Roland Schulz
l  Dr. David Hudak

