PTP Synchronized Projects:
Future Directions

John Eblen

September 14, 2013



Supporting “Other” Languages

Traditionally support C/C++/Fortran

Generic sync projects now allows for any
language

Additional support for specific languages
commonly used for HPC?

If so, which ones?



Main Contenders for HPC

Python
Eclipse support: PyDev
Packages: mpi4py, SciPy, NumPy
Example: PyClaw (hyperbolic PDE solver)

Eclipse support: StatET
Packages: Rmpi, snow, snowfall
Example: pbd-r (Programming with Big Data
in R)
Usually C underneath
Can be quite difficult to setup




Other Contenders

Matlab
MPI| support, well-known and available

Requires a license
Java

Built-in threading and concurrency support
Still has a stigma of being slow

Chapel and X10: Still works in progress
Perl and Ruby: Not much found...




Four Languages to Watch

Clojure: A modern Lisp dialect for the JVM
D: C++ successor?

Julia: Matlab and R successor?

Scala: Java successor?



Python in Parallel

Multithreading

GIL (Global Interpreter Lock) limitation

Only one thread can run interpreter at a time

Programs can release GIL

NumPy does this for array operations (C = A + B)

|O operations also release GIL while waiting
Symmetric Multiprocessing (SMP)

Avoids GIL by having multiple interpreters
Shared memory environment only, though
Massive parallelism

Mpidpy and several others




R Iin Parallel

No parallelism by default
Memory problems
Several solutions developed

snowfall
SNOW
rMPI




Cheap Parallelism

Common scenario: Employ a supercomputer
to run a single, non-parallel program on
different data files

Difficult to find examples of true, massively
parallel Python and R programs
Why?
Simple analysis or parsing scripts written by
non-programmers (e.g. scientists)

Scripting languages are more common among
non-expert users



Proposal 1

Add PTP support for “embarrassingly parallel” programs
Option for automatically-generated launcher script
Simply another layer

mpirun -np 1024 <program> <args>

mpirun -np 1024 <launcher> <program> <args>

Problem: launcher needs domain knowledge to map
MPI rank to specific arguments

Allow launcher script to be editable?

Use “job number” variable in arguments?
Other?

How to reduce?




Proposal 2

Support easily running jobs on login nodes
Produce input files
Reduce results
Analyze results

Options already discussed

Improve "Run as” menu option
Remote command line

Generic support for different build systems




Build System Support

Easier running of remote jobs is first step
Intercept build requests
Need automatic detection or project type

Provide options somehow (e.g. cmake In-
source build vs. out-of-source build)



CMake Support

Simplest approach

Run CMake to generate make files

Eclipse CDT4 Generator creates Eclipse CDT
project from CMake projects

Roland's idea: Enhance to create CDT build
configurations

Provides a way to build project
Could provide discovery information!
Could we tie this into Eclipse?

General idea of creating build configurations from a
build system?




Other Enhancements

Easier setup, creation of synchronized
projects

Allow it to be a general Eclipse facility
Remote indexing for specific languages
Remote debugging for specific languages



References and Acknowledgments

Parallel programming with numpy and scipy.
http://wiki.scipy.org/ParallelProgramming

Ryan R. Rosario. July 27, 2010. Taking R to

the Limit (High Performance Computing in
R).

Roland Schulz
Dr. David Hudak




