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WHY DIAGRAM DEFINITION? 
•  Graphical modeling languages at OMG have been defined by their 

•  Abstract syntax: formally using MOF 
•  Concrete syntax: informally using text and example diagrams 

•  Leads to ambiguity and inconsistency in specifications 
•  Increases cost of developing and learning modeling tools 
•  Hinders tool interoperability and promotes vendor lock-in 

 
•  Formal diagram definition is needed to 

•  Enable the interchange of modeling diagrams among tools 
•  Enable the consistent rendering of diagrams by tools 
•  Enable the consistent interpretation of diagrams by users 
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WHAT IS DIAGRAM DEFINITION? 
•  Diagram Definition (DD) is an OMG specification that enables the formal 

specification of concrete graphical syntax of MOF-based languages 
•  Version 1.0 has release July 2012 
•  Version 1.1 is in progress 

 
•  DD provides two standard metamodels 

•  Diagram Interchange (DI): enables the definition of diagram interchange syntax 
•  Diagram Graphics (DG): enables the definition of diagram graphical syntax 

•  DD provides an architecture that allows for the definition and mapping of a 
language’s concrete graphical syntax to its abstract syntax 
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DIAGRAM INTERCHANGE (DI) 
•  Defines graphical syntax that users have control over 

•  Examples: elements to visualize, diagram layout, notational choices, stylistic choices 

•  Provides a core abstract DI pattern that is realized by each modeling language 
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DIAGRAM GRAPHICS (DG) 
•  Defines graphical syntax that specifications have control over 

•  Examples: shape and line notations for each abstract syntax element 
 
•  Provides extensive 2D graphics primitives (similar to SVG) 
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DIAGRAM DEFINITION IMPLEMENTATION 

9 

§  An implementation for DD has been added in Papyrus 1.1 consisting of: 
 

§  An implementation of DD 1.0 
1.  Ecore-based API for DI metamodel (with changes to spec) 
2.  Ecore-based API and editor for DG metamodel (with changes to spec) 
3.  Model to text mapping from DG to SVG (potential contribution to spec) 

§  An implementation of UML DD 2.5 
4.  Ecore-based API and editor for UML DI metamodel (with changes to spec) 
5.  QVTO-based mapping from UML DI to DG metamodels (potential contribution to spec) 

§  An implementation of a diagram exporter from Papyrus 
6.  QVTO-based mapping from Papyrus DI to UML DI metamodels 
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DIAGRAM DEFINITION IMPLEMENTATION 
ARCHITECTURE IN PAPYRUS 
§  What has been implemented: 
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1. DI METAMODEL 
§  Changes to DC metamodel 

! DC::Color is made a PrimitiveType (with literals in the form #RRGGBB) 
! DC::KnownColors enumeration literals have associated color literal values 
! All structured DataTypes become Classes (unique by reference) 

«EPackage» 
DC 

«EPackage» 
DI 

«import» 
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1. DI METAMODEL 
§  Changes to DI metamodel 

! Replaced Element by DiagramElement in names of properties to avoid conflicts with UML 
! Made source/targetDiagramElement associations bi-directional 
! Made Edge::waypoint unique (Point is a Class now) 
! Added the property /DiagramElement::diagram 

«EPackage» 
DI 
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2. DG METAMODEL 
§  Changes to DG metamodel (mostly alignment to SVG) 

! Convert structured Datatypes into Classes 
! Refactored style support to be more CSS like (i.e., rule-based cascading style sheets) 
! Defined reusable concepts by specializing class Definition (with id property) 
! Added a Use graphical element to define reusable graphical templates 
! Added RootCanvas as a specialization of Canvas 
! Added the concept of Paint which can be color or a PaintServer (Pattern or Gradient) 

§  Implemented DG multi-tab editor 
! A tab to manipulate the DG model tree 
! A tab to see the XMI serialization of the model 
! Supports multiple roots of type RootCanvas 
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2. DG METAMODEL 

© 2015 Crossplatform Software Inc. 14
 



2. DG METAMODEL 
§  Added an example project with DG models  
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3. DG TO SVG MAPPING 
§  Implemented a model (DG) to text (SVG) transformation 

! Used the EMF-generated visitor pattern: DGSwitch<Object> to read the model 
! Used the Batik 1.7 API to create a corresponding SVG DOM 
! Added a JS script to implement text wrapping and alignment 

§  Implemented DG multi-tab editor 
! A tab for displaying the corresponding SVG DOM 
! A tab for rendering the corresponding SVG Image 
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3. DG TO SVG MAPPING 
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4. UML DI METAMODEL 
§  Changes to UML DI metamodel 

! Replaced Element with umlElement in the name of the properties 
! Replaced redefinitions with subsetting across the board 
! UMLDI::Diagram does not inherit UML::PackageableElement 

«EPackage» 
UML DI 
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4. UML DI METAMODEL 
§  Changes to UML DI metamodel 

! Defined the basic building blocks: 
§  Diagram (composes shapes and edges) 
§  Shape (composes labels and compartments) 
§  Edge (composes labels) 
§  Label 
§  Compartment 

! Adopted the approach of deeply specializing the building blocks as needed 
§  Added building block compositions in the proper context only 
§  Added normative options in the proper context only 
§  Disadvantage: the metamodel is big 

–  14 labels 
–  30 compartments 
–  30+ edges 
–  80+ shapes 
–  14 diagrams 
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4. UML DI METAMODEL 
§  All UML diagrams are supported (except Interaction Overview) 

! Issues with the support for Interaction Overview diagrams in Papyrus 
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4. UML DI METAMODEL 
§  Implemented UML DI multi-tab editor 

! A tab to manipulate the UML DI model tree 
! A tab to see the XMI serialization of the model 
! Supports multiple roots of type UMLDiagram 

© 2015 Crossplatform Software Inc. 21
 



5. UML DI TO DG MAPPING 
§  Implemented a model (UMLDI) to model (DG) transformation 

! Transformation is specified in QVTO 
§  Highly modular design: a module for every kind of building block 
§  Leverage of rule composition, inheritance, and overriding for conciseness 
§  Added a black box library to define some math and color functions 

! Non-normative styles used are: font name and font size (from UML DI) 
! Layout constraints (position/size) is copied from UML DI (no automatic layout in DG) 
! Text for all labels are derived in DG 
! Most important (but not all yet) normative options are captured 

§  Transformation is invoked from a UML DI editor by clicking this button 

© 2015 Crossplatform Software Inc. 

22
 



6. PAPYRUS DI TO UML DI MAPPING 
§  Implemented a model (Papyrus DI) to model (UML DI) transformation 

! Papyrus DI uses the GMF Notation metamodel 
§  Highly abstract metamodel defining only the building blocks 
§  The UML details are added with factories generated from other GMF models 

! Transformation is specified in QVTO 
§  Highly modular transformation design 
§  Leverage of rule composition, inheritance, and overriding for conciseness 
§  Slight adjustments of Papyrus notations to improve export output 
§  Added a black box library to perform the following: 

–  Render a diagram at the beginning and dispose of it at the end 
–  Get the exact rendered bounds of nodes and waypoints of edges 

–  Map Papyrus view types (numbers) to corresponding UML DI ones 
–  Papyrus assigns different view types to the same view in different diagrams 
–  Retrieved this information form extension points augmented by other maps 
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6. PAPYRUS DI TO UML DI MAPPING 
§  Implemented an export wizard for a Papyrus DI model 

! Runs the transformation on all diagrams in the model 
! Produces a UML DI model with multiple root UMLDiagrams 
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6. PAPYRUS DI TO UML DI MAPPING 
§  Added an example project consisting of 

1.  Papyrus DI models for all supported UML diagram kinds 
2.  Corresponding UML DI models exported from 1 
3.  Corresponding DG models transformed from 2 
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EXAMPLE: CLASS DIAGRAM 
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EXAMPLE: OBJECT DIAGRAM 
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EXAMPLE: PACKAGE DIAGRAM 
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EXAMPLE: PROFILE DIAGRAM 

© 2015 Crossplatform Software Inc. 29
 



EXAMPLE: COMPONENT DIAGRAM 
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EXAMPLE: COMPOSITE STRUCTURE DIAGRAM 
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EXAMPLE: DEPLOYMENT DIAGRAM 
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EXAMPLE: USE CASE DIAGRAM 
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EXAMPLE: STATE MACHINE DIAGRAM 
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EXAMPLE: ACTIVITY DIAGRAM 
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EXAMPLE: SEQUENCE DIAGRAM 
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EXAMPLE: COMMUNICATION DIAGRAM 
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EXAMPLE: TIMING DIAGRAM 
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NEXT STEPS 
§  Support the Eclipse DD project through its inoccupation phase 

! Fix issues reported against it 
! Redefine the DG to SVG mapping using Acceleo MTL 
! Remove dependency on local copy of Batik and depend instead on one form Orbit 

§  Improve the specifications 
! Push most of the changes made to the standard metamodels to the specifications 
! Contribute the DG to SVG mapping to the DD specification 
! Contribute the UMLDI to DG mapping to the UML specification 

§  Work on possible extensions: 
! Improve DG to incorporate declarative layout support 
! Design a DSL that consolidates DI and DG mapping specification 
! Experiment with bi-directional transformations to support diagram-based model editing 
! Specify DD specification for a Profile (e.g., SysML) 
! Generalize DD into a View/Viewpoint architecture specification 

§  Ability to describe diagram as well as form and other document-based viewpoints 
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