
1st Papyrus Workshop on DSML Technologies
June 22-23, 2015, Toulouse, France

Diagram Definition:
Implementation in Papyrus 1.1
Maged Elaasar, Ph.D., P.Eng.
Crossplatform Software Inc.
http://magedelaasar.com

ABOUT THE SPEAKER
 Maged Elaasar, Ph.D., P.Eng.

 Consulting Software Engineer

 Crossplatform Software Inc.

 http://magedelaasar.com/contact/

Dr. Elaasar has 18+ years of experience as a software engineer and computer scientist.
His domain of expertise is application development and model driven engineering. He
has consulted many international clients in these areas over the years.

Additionally, Dr. Elaasar is a senior software architect at the Jet Propulsion Laboratory,
California Institute of Technology, where he leads the area of Model Based Systems
Engineering. He is also a NASA representative to the OMG, where he co-leads several
modeling standards. Prior to that, he was a senior software architect at IBM for 13 years,
leading modeling technology on Eclipse and in the context of the Rational family of
modeling tools. He holds 12+ US. Patents in modeling technologies.

Furthermore, Dr. Elaasar has a Ph.D. in Electrical and Computer Engineering from
Carleton University in Canada (2012). He is also an adjunct professor at the department
of Systems and Computer Engineering in the same university. He frequently presents in
reputable venues. He also regularly publishes in refereed conferences and journals.

© 2015 Crossplatform Software Inc. 2

ACKNOWLEDGEMENTS

•  The work presented here was funded by CEA LIST and carried
by Crossplatform Software Inc.

© 2015 Crossplatform Software Inc. 3

WHY DIAGRAM DEFINITION?
•  Graphical modeling languages at OMG have been defined by their

•  Abstract syntax: formally using MOF
•  Concrete syntax: informally using text and example diagrams

•  Leads to ambiguity and inconsistency in specifications
•  Increases cost of developing and learning modeling tools
•  Hinders tool interoperability and promotes vendor lock-in

•  Formal diagram definition is needed to

•  Enable the interchange of modeling diagrams among tools
•  Enable the consistent rendering of diagrams by tools
•  Enable the consistent interpretation of diagrams by users

© 2015 Crossplatform Software Inc. 4

WHAT IS DIAGRAM DEFINITION?
•  Diagram Definition (DD) is an OMG specification that enables the formal

specification of concrete graphical syntax of MOF-based languages
•  Version 1.0 has release July 2012
•  Version 1.1 is in progress

•  DD provides two standard metamodels

•  Diagram Interchange (DI): enables the definition of diagram interchange syntax
•  Diagram Graphics (DG): enables the definition of diagram graphical syntax

•  DD provides an architecture that allows for the definition and mapping of a
language’s concrete graphical syntax to its abstract syntax

© 2015 Crossplatform Software Inc. 5

DIAGRAM INTERCHANGE (DI)
•  Defines graphical syntax that users have control over

•  Examples: elements to visualize, diagram layout, notational choices, stylistic choices

•  Provides a core abstract DI pattern that is realized by each modeling language

© 2015 Crossplatform Software Inc. 6

DIAGRAM GRAPHICS (DG)
•  Defines graphical syntax that specifications have control over

•  Examples: shape and line notations for each abstract syntax element

•  Provides extensive 2D graphics primitives (similar to SVG)

© 2015 Crossplatform Software Inc. 7

MOF

DI

AS

M3 spec

M2 spec

M1 user

AS DI

Model Diagram Graphics

AS DI to DG Mapping

Model
(interchanged)

Mapping
Language

MOF

View
(rendered)

Controller
(executed)

Instantiates

Specializes

References

AS: Abstract Syntax

CS : Concrete Syntax

DG

DD Spec

Language Spec

Transforms

DI : Diagram Interchange

DG: Diagram Graphics

DIAGRAM DEFINITION ARCHITECTURE

MVC
Architecture

© 2015 Crossplatform Software Inc. 8

DIAGRAM DEFINITION IMPLEMENTATION

9

§  An implementation for DD has been added in Papyrus 1.1 consisting of:

§  An implementation of DD 1.0
1.  Ecore-based API for DI metamodel (with changes to spec)
2.  Ecore-based API and editor for DG metamodel (with changes to spec)
3.  Model to text mapping from DG to SVG (potential contribution to spec)

§  An implementation of UML DD 2.5
4.  Ecore-based API and editor for UML DI metamodel (with changes to spec)
5.  QVTO-based mapping from UML DI to DG metamodels (potential contribution to spec)

§  An implementation of a diagram exporter from Papyrus
6.  QVTO-based mapping from Papyrus DI to UML DI metamodels

© 2015 Crossplatform Software Inc. 9

Ecore

UML Notation

Model Diagram Graphics

Ecore

DG2

Image

XSD

SVG

DI1

UML DI4

Diagram

Ecore

M2T3 QVTO5 QVTO6

*.uml *.notation *.umldi *.dg *.svg

M3

M2

M1

Papyrus

New component

Pre-existing component

DIAGRAM DEFINITION IMPLEMENTATION
ARCHITECTURE IN PAPYRUS
§  What has been implemented:

© 2015 Crossplatform Software Inc. 10

1. DI METAMODEL
§  Changes to DC metamodel

! DC::Color is made a PrimitiveType (with literals in the form #RRGGBB)
! DC::KnownColors enumeration literals have associated color literal values
! All structured DataTypes become Classes (unique by reference)

«EPackage»
DC

«EPackage»
DI

«import»

© 2015 Crossplatform Software Inc. 11

1. DI METAMODEL
§  Changes to DI metamodel

! Replaced Element by DiagramElement in names of properties to avoid conflicts with UML
! Made source/targetDiagramElement associations bi-directional
! Made Edge::waypoint unique (Point is a Class now)
! Added the property /DiagramElement::diagram

«EPackage»
DI

© 2015 Crossplatform Software Inc. 12

2. DG METAMODEL
§  Changes to DG metamodel (mostly alignment to SVG)

! Convert structured Datatypes into Classes
! Refactored style support to be more CSS like (i.e., rule-based cascading style sheets)
! Defined reusable concepts by specializing class Definition (with id property)
! Added a Use graphical element to define reusable graphical templates
! Added RootCanvas as a specialization of Canvas
! Added the concept of Paint which can be color or a PaintServer (Pattern or Gradient)

§  Implemented DG multi-tab editor
! A tab to manipulate the DG model tree
! A tab to see the XMI serialization of the model
! Supports multiple roots of type RootCanvas

© 2015 Crossplatform Software Inc. 13

2. DG METAMODEL

© 2015 Crossplatform Software Inc. 14

2. DG METAMODEL
§  Added an example project with DG models

© 2015 Crossplatform Software Inc. 15

3. DG TO SVG MAPPING
§  Implemented a model (DG) to text (SVG) transformation

! Used the EMF-generated visitor pattern: DGSwitch<Object> to read the model
! Used the Batik 1.7 API to create a corresponding SVG DOM
! Added a JS script to implement text wrapping and alignment

§  Implemented DG multi-tab editor
! A tab for displaying the corresponding SVG DOM
! A tab for rendering the corresponding SVG Image

© 2015 Crossplatform Software Inc. 16

3. DG TO SVG MAPPING

© 2015 Crossplatform Software Inc. 17

4. UML DI METAMODEL
§  Changes to UML DI metamodel

! Replaced Element with umlElement in the name of the properties
! Replaced redefinitions with subsetting across the board
! UMLDI::Diagram does not inherit UML::PackageableElement

«EPackage»
UML DI

© 2015 Crossplatform Software Inc. 18

4. UML DI METAMODEL
§  Changes to UML DI metamodel

! Defined the basic building blocks:
§  Diagram (composes shapes and edges)
§  Shape (composes labels and compartments)
§  Edge (composes labels)
§  Label
§  Compartment

! Adopted the approach of deeply specializing the building blocks as needed
§  Added building block compositions in the proper context only
§  Added normative options in the proper context only
§  Disadvantage: the metamodel is big

–  14 labels
–  30 compartments
–  30+ edges
–  80+ shapes
–  14 diagrams

© 2015 Crossplatform Software Inc. 19

4. UML DI METAMODEL
§  All UML diagrams are supported (except Interaction Overview)

! Issues with the support for Interaction Overview diagrams in Papyrus

© 2015 Crossplatform Software Inc. 20

4. UML DI METAMODEL
§  Implemented UML DI multi-tab editor

! A tab to manipulate the UML DI model tree
! A tab to see the XMI serialization of the model
! Supports multiple roots of type UMLDiagram

© 2015 Crossplatform Software Inc. 21

5. UML DI TO DG MAPPING
§  Implemented a model (UMLDI) to model (DG) transformation

! Transformation is specified in QVTO
§  Highly modular design: a module for every kind of building block
§  Leverage of rule composition, inheritance, and overriding for conciseness
§  Added a black box library to define some math and color functions

! Non-normative styles used are: font name and font size (from UML DI)
! Layout constraints (position/size) is copied from UML DI (no automatic layout in DG)
! Text for all labels are derived in DG
! Most important (but not all yet) normative options are captured

§  Transformation is invoked from a UML DI editor by clicking this button

© 2015 Crossplatform Software Inc.

22

6. PAPYRUS DI TO UML DI MAPPING
§  Implemented a model (Papyrus DI) to model (UML DI) transformation

! Papyrus DI uses the GMF Notation metamodel
§  Highly abstract metamodel defining only the building blocks
§  The UML details are added with factories generated from other GMF models

! Transformation is specified in QVTO
§  Highly modular transformation design
§  Leverage of rule composition, inheritance, and overriding for conciseness
§  Slight adjustments of Papyrus notations to improve export output
§  Added a black box library to perform the following:

–  Render a diagram at the beginning and dispose of it at the end
–  Get the exact rendered bounds of nodes and waypoints of edges

–  Map Papyrus view types (numbers) to corresponding UML DI ones
–  Papyrus assigns different view types to the same view in different diagrams
–  Retrieved this information form extension points augmented by other maps

© 2015 Crossplatform Software Inc. 23

6. PAPYRUS DI TO UML DI MAPPING
§  Implemented an export wizard for a Papyrus DI model

! Runs the transformation on all diagrams in the model
! Produces a UML DI model with multiple root UMLDiagrams

© 2015 Crossplatform Software Inc. 24

6. PAPYRUS DI TO UML DI MAPPING
§  Added an example project consisting of

1.  Papyrus DI models for all supported UML diagram kinds
2.  Corresponding UML DI models exported from 1
3.  Corresponding DG models transformed from 2

© 2015 Crossplatform Software Inc. 25

EXAMPLE: CLASS DIAGRAM

© 2015 Crossplatform Software Inc. 26

EXAMPLE: OBJECT DIAGRAM

© 2015 Crossplatform Software Inc. 27

EXAMPLE: PACKAGE DIAGRAM

© 2015 Crossplatform Software Inc. 28

EXAMPLE: PROFILE DIAGRAM

© 2015 Crossplatform Software Inc. 29

EXAMPLE: COMPONENT DIAGRAM

© 2015 Crossplatform Software Inc. 30

EXAMPLE: COMPOSITE STRUCTURE DIAGRAM

© 2015 Crossplatform Software Inc. 31

EXAMPLE: DEPLOYMENT DIAGRAM

© 2015 Crossplatform Software Inc. 32

EXAMPLE: USE CASE DIAGRAM

© 2015 Crossplatform Software Inc. 33

EXAMPLE: STATE MACHINE DIAGRAM

© 2015 Crossplatform Software Inc. 34

EXAMPLE: ACTIVITY DIAGRAM

© 2015 Crossplatform Software Inc. 35

EXAMPLE: SEQUENCE DIAGRAM

© 2015 Crossplatform Software Inc. 36

EXAMPLE: COMMUNICATION DIAGRAM

© 2015 Crossplatform Software Inc. 37

EXAMPLE: TIMING DIAGRAM

© 2015 Crossplatform Software Inc. 38

NEXT STEPS
§  Support the Eclipse DD project through its inoccupation phase

! Fix issues reported against it
! Redefine the DG to SVG mapping using Acceleo MTL
! Remove dependency on local copy of Batik and depend instead on one form Orbit

§  Improve the specifications
! Push most of the changes made to the standard metamodels to the specifications
! Contribute the DG to SVG mapping to the DD specification
! Contribute the UMLDI to DG mapping to the UML specification

§  Work on possible extensions:
! Improve DG to incorporate declarative layout support
! Design a DSL that consolidates DI and DG mapping specification
! Experiment with bi-directional transformations to support diagram-based model editing
! Specify DD specification for a Profile (e.g., SysML)
! Generalize DD into a View/Viewpoint architecture specification

§  Ability to describe diagram as well as form and other document-based viewpoints

© 2015 Crossplatform Software Inc. 39

