

Version V1.3 – August 2020 licensed under Creative Commons License CC-BY 4.0

Whitepaper
Process considerations:
A reliable AI data labeling process

This paper was written as part of a spotlight project of the openGENESIS working group at the Eclipse

Foundation in a cooperation between TÜV SÜD Auto Service GmbH and Incenda AI GmbH.

Matthis Eicher, TÜV SÜD Auto Service GmbH

Patrick Scharpfenecker, TÜV SÜD Auto Service GmbH

Dieter Ludwig, TÜV SÜD Auto Service GmbH

Felix Friedmann, Incenda AI GmbH

Florian Netter, Incenda AI GmbH

Marius Reuther, Incenda AI GmbH

Abstract

Due to its wide success in recent years, Artificial Intelligence (AI) is being used in more and more

systems. As established Software Engineering practices, including development processes, fail to

capture the complexity and additional challenges of developing AI systems, many Software Developers

struggle using AI, especially in safety critical areas like healthcare or automotive.

One of the AI methods with the highest impact so far is supervised Machine Learning (ML). The

performance of supervised ML is determined to a large extent by the data used to train and evaluate

the developed models and the application of established Software Engineering practices33. Common

issues include data and label quality, immature frameworks and processes for supervised ML

development, a lack of traceability of requirements to implementation and limited transparency of

some models.

The contribution of this whitepaper is the discussion and establishment of a sound supervised ML

lifecycle, with a focus on data quality, from the intent of developing a system using supervised ML to

the decommissioning of the developed system. The different steps of the lifecycle are detailed and a

deep-dive into the labeling steps is provided by defining a labeling process. The discussion includes

activities that are recommended to be performed in order to create high quality labels and raises

typical issues during labeling.

2

Contents

1 Introduction .. 3

2 Approach to establish a lifecycle and labeling process... 3

3 Background ... 4

4 Machine Learning Lifecycle ... 5

5 Labeling Process .. 11

6 Conclusion and Outlook .. 15

7 References .. 16

Annex A ML Lifecycle Diagram .. 18

Annex B Detailed Process Description .. 19

Annex B.1 Procedure Control Process Steps .. 19

Annex B.2 Labeling Process Steps .. 21

Annex B.3 Data Quality Assurance Steps ... 30

3

1 Introduction
Machine Learning – Deep Learning in particular – has enabled numerous commercial applications in

recent years. Deep Learning algorithms have outperformed humans and have made entirely new

technologies like autonomous driving, simultaneous translation and art synthesis possible.

With the rise of Deep Learning, concerns about its reliability and interpretability are raised in

increasing frequency. Common concerns cover the topics robustness against attacksi, online

confidence metricsii, interpretabilityiii and labeling quality.

Since the performance of trained models highly depends on the data sets they are optimized against,

the elicitation of high-quality ground truth data, particularly labeling (i.e. creating training targets to

optimize the models against) is a key activity within machine learning development. Labeling is a

substantial effort and a major challenge within machine learning development12–14.

In contrast to the premise of fast training of highly capable models, the machine learning development

lifecycle and corresponding processes are by far not as established as the development of

conventional software and the dependency on training data requires enormous additional

workloads11.

A recent case study33 evaluates the applied processes in Microsoft related to artificial intelligence.

The authors collect information from management and developers using a questionnaire. The results

are used to identify common practices and to extract a common workflow process for AI

development. On the other hand, CRISP-DM34 is an established high-level cross-industry standard for

data-mining. This standard defines an iterative process for understanding, processing and applying

insights based on data.

This whitepaper establishes a machine learning lifecycle and conducts a thorough assessment of the

labeling process within machine learning development and derives crucial considerations for the

elicitation of reliable ground truth data.

2 Approach to establish a lifecycle and labeling process
Within this work, a process and its necessary activities were developed to avoid quality weaknesses

and errors as good as possible, with a focus on the phase of generating labels for training and test data

for supervised machine learning. Several steps and analyses were carried out in order to achieve this

objective, as follows.

In a first step in section 4 Machine Learning Lifecycle, the lifecycle of a typical development of a

function based on supervised machine learning was drafted, while the focus was put on the

i Researchers have demonstrated that Deep Neural Networks (DNNs) can be fooled by various (“adversarial”)
attacks1, including changes to single image pixels2 and attacks in the physical world3,4. Consequently, counter
measures against adversarial attacks were investigated5,6.
ii Common DNN types, like Convolutional Neural Networks (CNNs), do not expose a reliable metric for their
confidence. Uncertainty measures are crucial for designing reliable systems that react on low confidence e.g.
by system performance degradation. Extensions to CNNs that overcome this fundamental shortcoming were
investigated with promising results7,8.
iii DNNs typically consist of millions of parameters that are not intuitively understandable for humans.
Consequently, the failure of a DNN can usually not be traced back to a cause, which drastically decreases
debuggability and possibilities for safety analysis. Research exploring this domain (“explainable AI”) has yielded
useful methods9,10 that significantly improve interpretability, typically via visual representations.

4

specification phase. This phase is especially characterized by the specification, collection, preparation

and provision of the required data. A very important part of this phase is the process of labeling, which

is examined in more detail.

After the definition of the lifecycle, a first draft for the labeling process was derived from it and

elaborated in the section 5 Labeling Process. For the graphical representation of this process it was

decided to use an activity-based flowchart, which was drawn up according to a BPMN28notation. The

BPMN notation was chosen because its clear definition allows an unambiguous graphical description.

Based on this input, a process analysis was performed using a Process FMEA according to VDA Volume

429. During this analysis, the process definition and the process analysis were iterated repeatedly, thus

the original draft of the process description was continuously improved. As soon as the process

description was stable, it was detailed with regard to process specific descriptions such as the purpose

and activities for each individual step.

This procedure ensures that all possible weaknesses in a labeling process are systematically

considered and that appropriate improvement measures can be taken.

3 Background

 Labeling
Many commercial applications of Deep Learning are based on Supervised Learning, an approach that

uses labels. Labels are annotations that provide a target to compare the output of trained models

with, in order to derive an error value that can be used to update the model’s parameters. These

annotations are specific to the model’s application (e.g. object detection, semantic segmentation) and

are typically created manually or semi-automated, causing enormous cost and effort. The extent,

representativity and quality of these annotations is decisive for the performance of the trained

models. Additionally, these aspects are fundamental to validate the model’s performance; a process

for which a part of the labeled data (“validation split” and “test split”) is used.

 Common pattern recognition tasks on visual data
There is a variety of pattern recognition tasks requiring labels that power real-world applications. To

illustrate the variety and to give an impression of the practical applications, some of the most common

tasks are described below:

5

Image classification Object detection

Assignment of a set of non-exclusive labels to
an image (i.e. Multi-Label classification).
Example: for the image above the following
conditions apply: red traffic light present,
sunny, urban.

 Detection of objects according to a pre-
defined set of classes. E.g. detection of cars,
trucks and pedestrians.

Label: List of applicable tags Label: 2d bounding boxes
Dataset: e.g. Tencent ML-Images15 Dataset: e.g. Kitti16

Semantic segmentation Pose estimation

Assignment of a class label to every pixel in
an image.

 Estimation of the pose of a human body. This
is typically achieved by predicting the
position of the joints of the body.

Label: 2D class map Label: List of joints per person
Dataset: e.g. Kitti17 Dataset: e.g. COCO Keypoint Detection18

The tasks outlined above are particularly common but are just an excerpt. Further tasks include:

Instance-aware segmentation19, panoptic segmentation20, point cloud segmentation21, lane

detection22, gaze estimation23, pedestrian crossing intention24 and many more.

4 Machine Learning Lifecycle
For more complex use-cases like multi-view object detection and classification, the use of machine

learning based approaches can be necessary, hence classical rule-based algorithms can often hardly

be implemented, generates huge efforts in the implementation or perform poorly.

For developing machine learning models, a process is highly recommended. The reference lifecycle

model as developed and proposed by this work can be seen in Figure 1.

6

Figure 1: Overview of a supervised machine learning lifecycle with focus on data (for better resolution see also Annex A ML
Lifecycle Diagram)

The diagram is centered around the lifecycle steps (in blue), from which general artifacts (like “Data &

Labeling Specification”, in green) or data sets (like “Training Data”, in yellow) can be derived or

inserted. In addition to this, the corresponding quality assurance measures are shown in red. The

lifecycle is divided into four phases: specification, implementation, verification and validation, as well

as operation and decommissioning.

In the following, the individual lifecycle steps will be described in detail.

 Specification Phase

 Motivation
Intention to provide a reliable, machine learning-based solution for a technical problem (e.g. driver

assistance system).

 Use-Case Specification
Description of the use-case for the machine learning-based solution to be developed. Should consider

all environment conditions (lighting, environment variety, weather, etc.) that may have an impact on

the performance of the solution to be developediv.

 Machine Learning Specification
Specification of the machine learning approach to solve the described use-case, including:

• Data & Labeling Specification, considering:

o Data of interest to be used for training and evaluation

▪ should be representative for defined use-case, could contain e.g. class

distribution.

▪ should consider societal requirementsv (ethics, laws, …) like being

discrimination free.

o Data format

▪ Data should be acquired in the same format as it will be present for the

deployed solution, e.g. sampling rate, resolution, sensor position, etc.

iv In the automotive industry, this includes the Operational Design Domain (ODD).
v This is a major, separate topic to consider32 which will not be handled in this whitepaper. Note that these

requirements also affect the training as the final model must, for example, be discrimination free. To support
this, the data must be selected appropriately.

7

o Labeling requirements

▪ Description of labeling tasks to be carried out, e.g. semantic segmentation

with defined set of classes.

▪ Quality of labels, e.g. false positive rate, bounding box size precision, etc.

• Model Space Specification, considering

o Functional Requirements, e.g. performance indications like confusion matrix

o Non-Functional Requirements, considering

▪ Resource Constraints, e.g. memory consumption, runtime

▪ Architectural Constraints, e.g. recurrence, determinism, layer

types/operations, hardware/accelerator

 Data acquisition and preprocessing
The physical process of data acquisition in suitable environments and sources (e.g. sensors). Data

acquisition should satisfy the requirements stated in the Data & Labeling Specification. Acquisition of

new data may not be needed if suitable data already exists.

Includes preprocessing and cleansing of collected data to enable further usage and training. The

preprocessing performed at this stage should be the same as is present for the deployed application.

For example, if the data is normalized to zero mean and unit variance here, the same transformation

must be applied for every datapoint the model is evaluated on.

 Selection for Labeling
Selection of representative data for labeling according to Data & Labeling Specification. May contain

multiple filtering steps, implementing:

• Subsampling, like spatial subsampling (limit number of samples per spatial region) and/or

temporal subsampling (pick every n-th sample).

• Active Learning25: select data for labeling that is considered valuable for training according to

an active learning algorithm, e.g. select data points containing class instances for which model

performance is low.

 Labeling
Creation of labels enabling training of supervised machine learning models according to Data &

Labeling Specification.

Labeling can usually be automated to some degree (auto-labeling26, weak supervision27, data

programming31), but the performance of current methods is not sufficient to replace manual effort

entirely. Consequently, labeling typically requires a significant manual effort. E.g. the effort to perform

instance segmentation for the COCO dataset was estimated with 10000s of man hours14.

High quality labels are key factors for the performance and reliability of trained models. Despite the

significant human effort, due to the enormous complexity and extent of the labeling activity, label

quality is often a major challenge when creating high quality training datasets13,14.

The labeling activity will be described in detail in Labeling Process.

 Selection for Training
Filtering of all available labeled data towards a reduced training dataset. This is typically done by

applying a series of filter conditions. The dataset is split into three parts:

• training subset used for learning the parameters of the model

8

• validation subset used for measuring the performance on data not used for training, so

hyperparameter optimization (model selection, model parameters) or early stopping can be

conducted

• test subset used for measuring the performance after training, to get an unbiased evaluationvi

of a potential overfitting against the validation subset if the model and its parameters are

chosen according to performance on the validation subset

The training data should be selected considering that it represents the intended use-case as well as

that it contains important edge cases according to the Data & Labeling Specification and the increasing

understanding of the occurring scenarios gained from data collection. It is vital for the performance

of the machine learning model in the target environment that the data selected for training is

representative. Consequently, this activity should be performed with the required rigor.

 Implementation Phase

 Set Model Space Exploration Policy
The model space is set by deriving hyperparameter constraints from the Non-Functional Requirements

defined in the Model Space Specification and by setting the optimization approach.

Non-Functional Requirements may contain the following constraints:

• Resource Constraints define runtime and memory constraints that result in model and

hyperparameter limits for training. For DNNs, this may affect the layer types, number of layers

and number of parameters (weights).

• Architectural Constraints may limit model types and hyperparameters. For DNNs, this may

affect layer types and quantization as they may not be supported by the target hardware. For

example, use of recurrent DNNs and temporal memory may need to be avoided due to safety

considerations.

The search space must be narrowed down to models and parameters satisfying the defined

constraints.

The optimization approach should define how training is supposed to be conducted, considering the

following aspects:

• Optimization method: reinforcement-learning based, grid search, or custom algorithm

• Sampling resolution for parameters: step size, granularity or sample limit

• Model Space Exploration Stopping Criteria: e.g. evaluation limit, performance threshold, time

limit

• Model Training Stopping Criteria: e.g. epoch limit, performance threshold, time limit

 Set Hyperparameters
While the Set Model Space Exploration Policy lifecycle step defines a generator for hyperparameter

instances, the Set Hyperparameters step is the act of drawing hyperparameters from this generator.

If parallelization is supported, multiple hyperparameter set instances can be used for parallel

training, but this paper focusses on sequential trainings using single hyperparameter set instances

for the sake of simplicity. This step includes the adaption of hyperparameters according to

experience from previous iterations.

vi While this is the ideal case, in practice experiments often get modified and repeated if the outcome is not good
enough. This leads to re-using the test data and therefore a potential optimization to this data.

9

 Training
The automated process of learning the parameters (e.g. weights) of a trainable model (e.g. neural

network) according to labeled training data to maximize the performance of the model on a given

machine learning task (e.g. image classification). This activity is performed in accordance to the Model

Space Specification.

Training of machine learning models typically requires large amounts of data, ranging from hundreds

of ideally independent samples for well-constrained tasks in lab environments to millions of samples

for complex tasks in the wild (e.g. autonomous driving).

This step also contains optimization of the trained model for the target hardware as it may affect

compliance with the Functional Requirements (e.g. performance loss due to weight quantization) and

Non-Functional Requirements (e.g. less memory used due to model compression) specified in the

Model Space Specification.

 ML Validation
Measurement of the performance of a trainable model on labeled ML validation data as part of the

training in order to get a metric for its performance that can be used to measure progress during

training, to adjust training hyperparameters (learning rate etc.) and to select the best model for the

Verification activity. This metric also allows to detect overfittingvii by comparing the performance

measured on training data vs. the performance measured on the ML validation data – in case the

latter gets worse while the former further increases, the model is likely overfitting.

The Training and ML Validation steps can be referred to as the Inner Training Loop. Before entering

the Verification step this Inner Training Loop is executed multiple times, until the Model Training

Stopping Criteria are reached.

 Verification- and Validation-Phase

 Verification
Verification: “confirmation, through the provision of objective evidence, that specified requirements

have been fulfilled” [SOURCE: ISO 9000:2005].

In the context of the development of ML-based applications, the Verification activity includes

measuring the functional performance of trained models on “test data”, which was never used for

Training or ML validation, to confirm that the functional performance satisfies the requirements

expressed in the Model space specification.

This activity happens after ML validation to verify the model did not overfit against the ML validation

data, which may happen if the hyperparameters of the model were chosen according to the maximum

performance on the ML validation data, or if many models were trained and the one with best

performance on the validation data was selected. A check with the “test data” can confirm whether

overfitting occurred and provides a final performance metric that can be used to confirm that the

performance threshold defined in the Model space specification is reached.

In case the training and target hardware environments differ, Verification results should be confirmed

in the target environment to provide representative evidence for the deployment in the field. This is

vii During training, models may start to store (parts of) the input data instead of learning to generalize over
(potential) input samples. This may cause a very low performance of the model when confronted with data only
slightly different from the training data.

10

necessary because of potential differences in performance due to e.g. weight quantization, target

precision, etc.

The Inner Training Loop together with the Verification step can be referred to as the Outer Training

Loop and may also be executed multiple times, while every pass through the Outer Training Loop

typically involves multiple passes through the Inner Training Loop. The Model Space Exploration

Stopping Criteria define how often the Outer Training Loop is passed through and under which

conditions it finishes by returning to the Set Hyperparameters step.

 Deployment
Deployment of the ML-based application in the target real world environment or a representative

simulated environment. This step includes system integration that connects all system modules (e.g.

from sensors to actuators) and enables the observation of dependencies and resulting failures.

A practical example for deployment would be flashing of the software containing the trained model

to the ECUs of a vehicle planned to be used for the Validation step.

 Validation
Validation: “confirmation, through the provision of objective evidence, that the requirements for a

specific intended use or application have been fulfilled” [SOURCE: ISO 9000:2005].

In the context of the development of ML-based applications, the Validation activity includes

measuring the performance of a trained model under real-world conditions to confirm that the initial

assumptions expressed in the Use-Case Specification, Data & Labeling Specification and the used

data are valid.

If the observed performance is significantly lower compared to the results in Verification, the

Verification setup may not have been representative for the application in the real world, e.g. because

the labeled data used for verification was not collected from representative environments. In this case

it may be required to go back to the Use-Case Specification step, update the Data & Labeling

Specification accordingly and re-execute the required, subsequent steps.

 Operation- and Decommissioning-Phase

 Operation
While the application is operated in the field (e.g. robotaxi fleet driving in a major city), the following

activities can be pursued:

• Field observation: monitoring of the behavior of ML-powered systems in the field. Tracking

of the location, usage, and ownership in order to enable mitigation in case of severe issues

(see below).

• Maintenance/Updates: Provisioning of software updates, particularly updates for the trained

models. Updates enable ML-powered systems in the field to further increase in functional

performance and to adapt to environment changes.

• Online Learning: Continuous training of the model in its real-world environment. Like weight

updates, this enables performance increases in the field, but with the difference that the

individual ML-powered systems can directly learn from their own experiences without waiting

for training, release and updates from a backend. Consequently, the training process in the

11

individual ML-powered system should satisfy the same requirementsviii imposed on the

Training activity that happens in the Implementation phase.

In case systems in the field show critical performance issues, measures must be taken to prevent

causing harm:

• Notification: Operators (e.g. remote control centers) should be informed about known issues.

• Degradation: The ML-powered systems should either degrade in performance themselves

(e.g. autonomous cars reducing speed or capabilities), or limits should be imposed externally

(e.g. disabling certain routes) in order to ensure safe operation.

• Grounding: In case of a severe potential for harm of people or business, the ML-powered

applications should be grounded, by calling them back to their depot (in case of mobile

robots), switching them off remotely, or by notifying their operators with grounding

instructions.

 Decommissioning
Permanent retirement of ML-powered systems. Owners of the systems should be informed

sufficiently early, deactivation should be tracked (and enforced if necessary) and finally all observation

activities can be stopped.

5 Labeling Process
The previously discussed Machine Learning Lifecycle covers the entire lifecycle of a supervised

machine learning based system and focuses especially on the usage of data.

In the following, a reference process for the Labeling lifecycle step with integrated quality assurance

will be described. This process is visualized by an activity-based flowchart shown in Figure 2.

In general, traceability should be established for reproducibility and trackability across the entire

process. As soon as requirements, configurations or information are derived from or build on each

other, this should be documented.

For the individual processes and process steps within the labeling lifecycle step, this paper will focus

on the creation of the labels and will describe the purpose and activities of each process step. Due to

the extent of this paper, further specifications of the process such as those of SIPOC30 (Supplier, Input,

Processing, Output, Customer), RASI30 (Responsible, Accountable, Consulted, Informed) or similar are

included only partly.

viii This might depend on the required integrity of the system.

12

Figure 2: Labeling Process diagram

 Overview

 Main Entities
The following roles are involved in or responsible for the different steps of the labeling process.

Data Owner Entity

• Owns the data and is responsible for the complete labeling procedure.

• Performs Procedure Control.

• Initiates and approves the artifacts from the label generation as well as the label quality check.

• Checks the progress and decides at given points about proceeding to the next process-step.

Labeling Entity

• Performs Labeling.

• Reports its progress and potential issues continuously as well as provides the generated labels

to the Data Owner.

Quality Assurance Entity

• Performs Data Quality Assurance.

• Executes the task of label quality check.

• Reports progress and potential issues continuously and provides the identified label issues to

the Data Owner.

The mentioned roles used here are generic and can be understood both as a person or an

organizational entity.

 Major Artifacts
The following artifacts are used in several process steps or are exchanged between different entities.

at

a
 a

e
 i

a
e
 i

t

Performance
Op mi a on

 e
e
d
b
ac

k
 e

e
d
b
ac

k

at

a

a

it

ra

 e

a

it

ra

 e

t

Performance
Op mi a on

 e
e
d
b
ac

k
 e

e
d
b
ac

k

 r e re tr ata er

Review Speci ca on
concerns for

Cancela on decision

Speci ca on
su cient

[yes]

[no]

Assess abel
and A Ar facts

for Approval

Data uality
su cient

Review Speci ca on
concerns for

Cancela on decision

Speci ca on
su cient

[yes]

[no]

[no]

[yes]

Adapt for abeling
Speci caiton and

Source Data

Automated Data Pre
 abeling

Distribute abeling

 abel erging

 abeling

Adapt to abelling
Speci ca on and

Source Data

Automated abel Pre
Checking

Distribute abel
Checking

 abel Checking

 abel Check
Ar facts erging

13

Labeling Specification

The Labeling Specification specifies the requirements to the labeling task, e.g.

• labeling task and scope (classes, text, numerical values, …),

• format for the labels to be produced (boxes, points, … paired with class, text, …),

• accuracy targets and tolerances.

Potential Issues:

• Imprecision or Ambiguity, e.g. it has not been specified if pick-up trucks belong to the class of

trucks or passenger cars.

• Incompleteness, e.g. a class of objects has been forgotten

• Inconsistency, e.g. including pick-up trucks in two classes, trucks and passenger cars.

• Format, e.g. objects are requested to be labeled as points while the learnt system is required

produce bounding boxes.

• Lack of precise quality requirements, e.g. it should be specified how much a bounding box

size is allowed to deviate from the actual object in the data.

• Specification version mismatch, e.g. data owner entity, labeling entity and quality assurance

entity work on different versions of the labeling specification or the source data does not

match to the labeling specification version.

Analysis Instructions

The Analysis Instructions describe how the labeled data will be analyzed and which conditions should

be satisfied, for example

• overlap of data between different Labelers,

• metrics for quality evaluation and

• thresholds for acceptable labeling quality.

Source Data

The unlabeled data in a specified format (images with a given resolution, tabular data, text corpus, …)

that should be labeled.

Potential Issues:

• Corruption, e.g. having random bit-flips due to some transmission process or by a faulty

sensor

• Swapping, e.g. files are accidently swapped resulting in the wrong data being annotated,

potentially biasing the dataset.

• Inaptitude, e.g. data being defective due to sensor or environment artifacts, e.g. overexposed

images, insufficient camera resolution, raindrops/dirt/insects on the camera lens, etc.

• Inappropriate, e.g. for a product that should be deployed in an urban environment, but data

shows only highway scenarios.

Labels

The labels assigned to the Source Data, created by the Labeling Entity.

Potential Issues:

• Misclassification, e.g. a vehicle is incorrectly classified as a bicycle.

• False Positives, e.g. a bounding box was provided for an object that doesn’t actually exist in

the scene.

14

• False Negatives, e.g. no bounding box was provided for a cyclist.

• Shape Mismatch, e.g. a segment or bounding box doesn’t precisely enclose a cyclist.

• Incorrect Re-identification, e.g. if it is required to provide consistent IDs over time, but the

labeled IDs are incorrect.

• Incorrect Format, e.g. labels don’t comply with the specified format.

Issue List

A list of all issues occurring in the course of labeling (e.g. requirements being ambiguous). All entities

can raise issues that are discussed with the data owner to improve the specifications or labeling

process, if applicable.

Potential Issues:

• Incompleteness, i.e. no organized issue collection

• Inaccuracy, i.e. vague, inaccurate statements

 Process Description
In the following an overview of the tasks performed by the three involved entities is given. A detailed

description of the individual process steps can be found in Annex B.

 Procedure Control
Responsible: Data Owner Entity

The general duties of the Procedure Control are:

• Be the interface to other lifecycle steps.

• Delegation of tasks within the Labeling lifecycle step.

• Coordination of the execution of the process steps by the involved parties.

• Monitor quality to detect potential issues and react to them.

• Decide if the generated data labels reach the specified quality for approval.

• Tracking and resolution of items in the issue list.

 Labeling
Responsible: Labeling Entity

The general duties of the Labeling are:

• Perform the labeling and hand over resulting labels and related working products.

• Adapt the labeling setup according to incoming specifications and requirements.

• Raise issues immediately, e.g. specification ambiguities.

 Data Quality Assurance
Responsible: Quality Assurance Entity

The general duties of the Data Quality Assurance are:

• Perform the data quality assurance and hand over the identified deviations.

• Adapt the data quality assurance setup according to incoming specifications and

requirements.

• Provide detailed feedback on found labeling issues to the labeling entity and/or the data

owner.

• Raise issues immediately.

15

6 Conclusion and Outlook
The presented Machine Learning Lifecycle and Labeling Process establish the foundations for the

quality and reliability of supervised ML systems:

The Machine Learning Lifecycle provides a concise view on the development of machine learning-

based systems, from the initial intent to their decommission. The lifecycle has a special focus on data

quality – a crucial factor for successful development of machine learning-based systems that is not

always considered sufficiently. The lifecycle shows how specifications that are generated early in the

development process are being picked up by activities downstream, enabling a clear view on the

propagation of errors via the specifications. It was also shown how data is produced and consumed as

part of the lifecycle, derived from the specifications.

The Labeling Process shows how the key stakeholders should interact with each other to facilitate

production of high-quality labeled data: The Data Owner Entity provides specifications, coordinates

the process and approves the labels, the Labeling Entity produces labels according to the specification,

and the Quality Assurance Entity checks them. Additionally, a rigorous monitoring of the process

activities is highly recommended; issues should be collected and reviewed, correcting measures

should be applied. To enable a detailed understanding of the process, frequent issues with key

artifacts and a detailed description of the individual process steps (see Annex B) are provided.

The proposed approach should be applied in practice to observe and evaluate its effectiveness. The

results can be used as feedback to refine the proposed approach in case weaknesses are found.

Analogous to the analysis of the labeling step performed here, the other lifecycle steps such as

specifications, data acquisition & preprocessing, selection for labeling as well as for training can now

be described and analyzed in detail. This will establish a complete understanding of all aspects of the

machine learning lifecycle and the corresponding quality assurance.

A concise approach for the quality assurance of AI data is a fundamental necessity towards the

maturity of the handling of AI and a precondition for safety-relevant systems, such as automated

vehicles.

16

7 References
1. Nguyen, A., Yosinski, J. & Clune, J. Deep neural networks are easily fooled: High confidence

predictions for unrecognizable images. in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (2015). doi:10.1109/CVPR.2015.7298640

2. Su, J., Vargas, D. V. & Sakurai, K. One pixel attack for fooling deep neural networks. (2017).

3. Sitawarin, C., Bhagoji, A. N., Mosenia, A., Chiang, M. & Mittal, P. DARTS: Deceiving Autonomous
Cars with Toxic Signs. (2018).

4. Kurakin, A., Goodfellow, I. J. & Bengio, S. Adversarial examples in the physical world. (2016).

5. Madry, A., Makelov, A., Schmidt, L., Tsipras, D. & Vladu, A. Towards Deep Learning Models
Resistant to Adversarial Attacks. (2017).

6. Yuan, X., He, P., Zhu, Q. & Li, X. Adversarial Examples: Attacks and Defenses for Deep Learning.
(2017).

7. Gal, Y. & Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. (2015).

8. Postels, J., Ferroni, F., Coskun, H., Navab, N. & Tombari, F. Sampling-free Epistemic Uncertainty
Estimation Using Approximated Variance Propagation. (2019).

9. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. & Lipson, H. Understanding Neural Networks
Through Deep Visualization. (2015).

10. Samek, W., Wiegand, T. & Müller, K.-R. Explainable Artificial Intelligence: Understanding,
Visualizing and Interpreting Deep Learning Models. (2017).

11. Sculley, D. et al. Hidden technical debt in machine learning systems. in Advances in Neural
Information Processing Systems (2015).

12. Roh, Y., Heo, G. & Whang, S. E. A Survey on Data Collection for Machine Learning: a Big Data -
- AI Integration Perspective. (2018).

13. Everingham, M. et al. The Pascal Visual Object Classes Challenge: A Retrospective. Int. J.
Comput. Vis. (2014). doi:10.1007/s11263-014-0733-5

14. Lin, T. Y. et al. Microsoft COCO: Common objects in context. in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (2014). doi:10.1007/978-3-319-10602-1_48

15. Wu, B. et al. Tencent ML-Images: A Large-Scale Multi-Label Image Database for Visual
Representation Learning. (2019).

16. The KITTI Vision Benchmark Suite: Object Detection Evaluation 2012. Available at:
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d. (Accessed: 1st
December 2019)

17. The KITTI Vision Benchmark Suite: Semantic Segmentation Evaluation. Available at:
http://www.cvlibs.net/datasets/kitti/eval_semseg.php?benchmark=semantics2015.
(Accessed: 1st December 2019)

18. COCO - Common Objects in Context - COCO 2019 Keypoint Detection Task. Available at:
http://cocodataset.org/#keypoints-2019. (Accessed: 1st December 2019)

19. Li, Y., Qi, H., Dai, J., Ji, X. & Wei, Y. Fully convolutional instance-aware semantic segmentation.

17

in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
(2017). doi:10.1109/CVPR.2017.472

20. Li, Q., Arnab, A. & Torr, P. H. S. Weakly- and semi-supervised panoptic segmentation. in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) (2018). doi:10.1007/978-3-030-01267-0_7

21. Qi, C. R., Su, H., Mo, K. & Guibas, L. J. PointNet: Deep learning on point sets for 3D classification
and segmentation. in Proceedings - 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017 (2017). doi:10.1109/CVPR.2017.16

22. Neven, D., De Brabandere, B., Georgoulis, S., Proesmans, M. & Van Gool, L. Towards End-to-
End Lane Detection: An Instance Segmentation Approach. in IEEE Intelligent Vehicles
Symposium, Proceedings (2018). doi:10.1109/IVS.2018.8500547

23. Zhang, X., Sugano, Y., Fritz, M. & Bulling, A. Appearance-based gaze estimation in the wild. in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (2015). doi:10.1109/CVPR.2015.7299081

24. Evans, D. & Norman, P. Understanding pedestrians’ road crossing decisions: An application of
the theory of planned behaviour. Health Educ. Res. (1998). doi:10.1093/her/13.4.481-a

25. Active learning (machine learning) - Wikipedia. Available at:
https://en.wikipedia.org/wiki/Active_learning_(machine_learning). (Accessed: 14th
December 2019)

26. Zhuang, B., Liu, L., Li, Y., Shen, C. & Reid, I. Attend in groups: A weakly-supervised deep learning
framework for learning from web data. in Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017 (2017). doi:10.1109/CVPR.2017.311

27. Zhou, Z. H. A brief introduction to weakly supervised learning. National Science Review (2018).
doi:10.1093/nsr/nwx106

28. International Organization for Standardization. ISO/IEC 19510:2013: Information technology -
Object Management Group Business Process Model and Notation. (2013).

29. Verband der Automobilindustrie. Volume 4 - Quality Assurance in the Process Landscape.
(2009).

30. International Organization for Standardization. ISO 13053-2:2011: Quantitative methods in
process improvement - Six Sigma - Part 2: Tools and techinques. (2011).

31. Ratner, A. J., De Sa, C. M., Wu, S., Selsam, D., & Ré, C. Data programming: Creating large training
sets, quickly. In Advances in neural information processing systems (2016).

32. HEG-KI. Ethics guidelines for trustworthy AI. https://ec.europa.eu/digital-single-
market/en/news/ethics-guidelines-trustworthy-ai (2019). (Accessed: 20.03.2020)

33. Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N., Nushi, B.,
Zimmermann, T.. Software engineering for machine learning: a case study. In Proceedings of
the 41st International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP ’19). IEEE Press, 291–300 (2019).

34. Shearer, C. The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data
Warehousing, 5 (2000).

18

Annex A ML Lifecycle Diagram

19

Annex B Detailed Process Description
This section contains a detailed description of all process steps for the process steps associated with

Procedure Control, Labeling and Data Quality Assurance. A graphical representation of this process

can be found in Figure 2: Labeling Process diagram.

The process steps will be described according to the following schema:

• Process Step Title (as headline)

• Purpose

• Inputs

• Activities, each containing

• Description

• Outputs

• Potential Issues (if applicable)

• Examples (if applicable)

• Resources (if applicable)

• Tools (if applicable)

Annex B.1 Procedure Control Process Steps

1 Review Specification concerns for Cancelation (after Labeling)

1.1 Purpose
To evaluate if the Labeling Specification had any issues and to decide if the Labeling Specification

needs a refinement before proceeding further.

1.2 Inputs

1.2.1 Labeling Specification
See Labeling Specification.

1.2.2 Labeling Artifacts
All artifacts created by the Labeling Entity. Includes, for example, the Labels and the Issue List.

1.3 Activities

1.3.1 Review Concerns
Description: The Issue Analyst must analyze the source of the raised issues, which were documented

in the Issue List during labeling. Based on this identification, suitable measures need to be taken.

If the Labeling Specification has weaknesses, the current process should be aborted, and the Labeling

Specification should be fixed. After the correction of the Labeling Specification, the labeling can be

repeated.

The earlier potential problems are found here, the more efficient and cost effective labeling can be

performed. Therefore, an issue assessment should take place continuously.

If there are no issues left, the next tasks of label quality assurance can be entered.

Outputs: The decision whether the Labeling Specification must be updated or if the next process step

can be entered.

20

1.4 Resources

1.4.1 Issue Analyst
Performs the activity Review Concerns.

2 Review Specification concerns for Cancelation (after Label Checking)

2.1 Purpose
To evaluate if the Labeling Specification had any issues and to decide if the Labeling Specification

needs a refinement before further proceed.

2.2 Inputs

2.2.1 Labeling Specification
See Labeling Specification.

2.2.2 QA Artifacts
All artifacts created by the Quality Assurance Entity. Includes, for example, the Issue List.

2.3 Activities

2.3.1 Review Concerns
Description: The Issue Analyst must analyze the source of the raised issues, which were documented

in the Issue List during the label checking. Based on this identification, suitable measures need to be

taken.

If the Labeling Specification has weaknesses, the current process should be aborted, and the Labeling

Specification should be fixed first. After the correction of the Labeling Specification, the labeling can

be repeated.

The earlier potential problems are found here, the more efficient and cost effective labeling can be

performed. Therefore, an issue assessment should take place continuously.

If there are no issues left, the next step of approval can be performed.

Outputs: The decision, if the Labeling Specification must be updated, or if the next process step can

be entered.

2.4 Resources

2.4.1 Issue Analyst
Performs the activity Review Concerns.

3 Assess Labels and QA Artifacts for Approval

3.1 Purpose
To implement a final quality gate for the activities performed in this lifecycle step.

3.2 Inputs

3.2.1 Labeling Specification
See Labeling Specification.

3.2.2 Labels
See Labels.

21

3.2.3 QA Artifacts
The artifacts created during the process steps performed by the Quality Assurance Entity.

3.3 Activities

3.3.1 Assess artifacts
Description: The Issue Analyst must analyze the source of the raised issues, which were documented

in the Issue List during label checking. Based on this identification, suitable measures need to be taken.

If the issues are based on insufficient label quality, the labeling tasks need to be repeated with

adoptions to the corresponding issues.

The earlier potential problems are found here, the more efficient and cost effective labeling can be

performed. Therefore, an issue assessment should take place continuously.

If there are no or only acceptable (minor) issues left, the data and its labels can be approved and used

in the next lifecycle steps.

Outputs: The decision, if either the data quality is sufficient, or this lifecycle steps has to start from

the beginning to improve the label quality.

3.4 Resources

3.4.1 Issue Analyst
Performs the activity Assess artifacts.

Annex B.2 Labeling Process Steps

1 Adapt for Labeling Specification and Source Data (for Labeling)

1.1 Purpose
Prepares the setup for the further steps of this process. Implements the required modifications to

adapt to the current labeling task.

1.2 Inputs

1.2.1 Labeling Specification
See Labeling Specification.

1.2.2 Source Data
See Source Data.

1.2.3 Analysis Instructions
See Analysis Instructions.

1.2.4 Labeler Availability
A list of Labelers with their availability and experience.

1.3 Activities

1.3.1 Labeling Instruction Derivation
Description: The Analyst assesses the Labeling Specification and Source Data according to the Analysis

Instructions and creates Labeling Instructions which will later be used by the Labelers to label the

22

Source Data. These instructions must specify tolerances, be non-contradictory, complete and

unambiguous.

Output: Labeling Instructions

Potential Issues:

• The analyst could derive incorrect labeling instructions which lead to e.g.

o Imprecise labels, for example, if the instructions specify “the bounding box should not

be too big” instead of “the bounding box should be as small as possible while still

containing the full object, with a tolerance of at most one pixel on each side of the

box”.

o Ambiguous labels, for example, if the instructions specify “label the classes vehicle

and passenger car” instead of “label the classes vehicle without passenger car and

passenger car”.

o Incomplete labels, for example, if the instructions specify “label all vehicles into the

classes passenger car and truck” while not specifying all possible vehicle classes or a

class “other”.

o Inconsistent labels, for example, if tolerances are not the same for different classes of

the same target.

Example: Consider the following input:

• a dataset of 1000 images

• a Labeling Specification asking for minimal bounding boxes around every passenger car

The created Labeling Instructions could be:

• Provide a list of all passenger car (stationary and non-stationary, given a well-defined set of

characteristics of passenger cars considering, for example, if trailers belong to the passenger

car or not) in every image with a bounding box that is

o as small as possible,

o does not have one or more vehicle pixels outside the bounding box and is not more

than one pixel per side larger than required to fulfill the second condition.

1.3.2 Pre-Labeling Configuration Parameters Derivation
Description: The Analyst assesses the Labeling Specification and Source Data according to the Analysis

Instructions and creates the Pre-Labeling Configuration Parameters. These parameters instantiate the

Pre-Labeling Tool to automatically perform an initial labeling of the data. The configuration must

consider

• general parameters of the Pre-Labeling Tool,

• the concrete Labeling Specifications, e.g. parameters describing what to label and how to label

it,

• the Analysis Instructions, e.g. tolerances,

• how well the labeling must be, and

• other criteria.

In the case the Pre-Labeling Tool uses randomness for example for training, to ensure reproducibility,

the Pre-Labeling Configuration Parameters Derivation must produce the appropriate seeds.

Output: Pre-Labeling Configuration Parameters

23

Potential Issues:

• The analyst could derive incorrect configuration parameters which configure the Pre-Labeling

Tool to mislabel the data, e.g. imprecise, ambiguous, incomplete, inconsistent labels (see

Labeling Instruction Derivation for more details).

1.3.3 Distribution Instruction Derivation
Description: Based on the Source Data, Labeling Specification, Analysis Instructions and Labeler

Availability, the Analyst derives a Distribution Instruction which states in how many subsets the data

and/or labels will be sliced. If the Analysis Instructions specify some overlap between data subsets (to

be used, for example, for validating the Labeler accuracy), this must be accounted for in the derived

Distribution Instructions.

Output: Distribution Instructions

Potential Issues:

• The Analyst could derive inappropriate or incorrect Distribution Instructions, for example, by

not including an overlap between the different labelers for cross-checking their performance

(see following example).

Example Consider the following input:

• a dataset of 1000 images

• a Labeling Specification asking for minimal bounding boxes around every person

• instructions to cross-check 5% of the labeled images

• 5 available Labelers

The created Distribution Instructions could be:

• Create 5 random, non-overlapping subsets of 200 images each.

• Select another 50 random images.

• Assign every Labeler one of the 5 subsets of 200 images plus the 50 shared images.

The Distribution Instructions could also use a different method for creating an overlap between the

data for every Labeler. If there are multiple labels to create, the distribution could additionally (or

instead) distribute the target labels between the Labelers. The chosen distribution must be

appropriate for the concrete instantiation of the label generation task.

1.4 Resources

1.4.1 Analyst
Description: The Analyst performs the activities Labeling Instruction Derivation, Pre-Labeling

Configuration Parameters Derivation and Distribution Instruction Derivation.

Potential Issues:

• While assessing the Source Data and Labeling Specification according to Analysis Instructions,

the Analyst could

o Assess the wrong Source Data or wrong Labeling Specification.

o Assess Source Data and Labeling Specification not according to the Analysis

Instructions by being

▪ imprecise (for example by not maintaining the required level of

accuracy/quality).

24

▪ incomplete (for example by not considering the given requirements).

• While producing the labeling instructions for the Annotator, the Analyst could produce

incorrect labeling instructions.

• While producing the configuration parameters for the automated Pre-Labeling Tool, the

Analyst could produce incorrect configuration parameters.

2 Automated Data Pre-Labeling

2.1 Purpose
Automatically prelabel data to get an initial labeling and improve/speed-up the following labeling task.

2.2 Inputs

2.2.1 Pre-Labeling Configuration Parameters
Configuration parameters of the Pre-Labeling Tool. This configuration might contain (hyper-)

parameters like, for example,

• memory/runtime parameters (tolerances for tuning accuracy vs. runtime, …),

• algorithm parameters (“number of clusters”, thresholds, hyperparameters, models, …), and

• seeds (to ensure reproducibility in case the Pre-Labeling Tool uses randomness for retraining

or prelabeling).

2.2.2 Source Data
See Source Data.

2.2.3 Data for Retraining
Labeled data to be used for retraining and improving the Pre-Labeling Tool. Usually, this input is empty

in the first iteration of the labeling process, subsequent iterations can provide labeled data to improve

the Pre-Labeling Tool and reduce further effort of the Labelers.

2.3 Activities

2.3.1 Configuration Parameter Setup
Description: The Tool Operator uses the Pre-Labeling Configuration Parameters and modifies the

Configuration State of the Pre-Labeling Tool.

Example: Based on the Pre-Labeling Configuration Parameters, the Tool Operator sets the Pre-

Labeling Tool to

• use a certain amount of memory for caching,

• use a defined classification threshold,

• apply non-maximum suppression,

• use a given number as randomness seed (usually only used for retraining).

2.3.2 Pre-Labeling Algorithm Retraining
Description: The Tool Operator uses labeled data from previous iterations of the Labeling process step

to retrain the Pre-Labeling Tool and can improve its performance. This feedback-loop can be executed

several times during the label generation phase. This activity is optional and might not be executed

during the first iteration of the label generation phase. If it is executed, this will affect the quality of

the Pre-Labeling activity.

25

Potential Issues:

• Known as Catastrophic Forgetting, neural networks can forget previously learnt information

when re-training with new data. If the Pre-Labeling Algorithm uses a neural network, special

care must be taken that the newly labeled data does not reduce performance on previous

data.

• Like the problems arising while training the ML model under development, training the Pre-

Labeling Algorithm must take care of over- and underfitting.

• If this activity is provided data or labels with reduced quality, this could lead to a negative

feedback-loop by reducing the quality of the created pre-labels which could lower the quality

of the labels. The resulting performance decrease could reinforce itself.

2.3.3 Pre-Labeling
Description: The Tool Operator executes the Pre-Labeling Tool, using the input Configuration State

and a (potentially trained) State (see Pre-Labeling Algorithm Retraining), on the Source Data to get

the Prelabels. The Prelabes represent an initial labeling of the data according to the Labeling

Specification.

Potential Issues:

• The created Prelabels could be misleading the labelers. For example, if the algorithm, as

opposed to the requirements, systematically creates separate bounding boxes around

passenger cars and their connected trailers, the labelers could interpret this behavior as

intended and thereby also mislabel trailers as separate entities.

• Too many issues may overwhelm the labeler, setting a low quality expectation for the labeler

that leads to overlooking of small issues.

• The trained model could take decisions that are not covered by the requirements and may

motivate human labelers to follow its decisions. Human labelers should not follow this

example but should raise requirements issues.

Output: Prelabels

Example: Consider the task of labeling all vehicles in a set of images with bounding boxes and assigning

the manufacturer as class. Initially, the Pre-Labeling Tool might only be able to identify (most) vehicles

and create approximate bounding boxes around them without knowing the manufacturer. This

preparation reduces the effort for manual labeling significantly. After some data has been manually

labeled (bounding boxes are corrected and annotated with the correct manufacturer), the Pre-

Labeling Tool (or the AI system under development which is supposed to perform this task in the end)

can be trained using these labels to create better bounding boxes around vehicles and to assign an

initial guess of the vehicle manufacturer. This further reduces the effort of consecutive iterations of

labeling.

2.4 Resources

2.4.1 Tool Operator
The Tool Operator performs the activities Configuration Parameter Setup, Pre-Labeling Algorithm

Retraining and Pre-Labeling.

2.5 Tools

2.5.1 Pre-Labeling Tool
The Pre-Labeling Tool performs an initial labeling of the source data. It might use a classical algorithm,

26

• the AI algorithm under development (in an iterative approach), or

• a different (more or less powerful) AI algorithm

to perform Pre-Labeling. The tool must be configured using a

• configuration state from some configuration space (e.g. hyperparameters) and

• a (potentially trained or empty) state (depending on if the Pre-Labeling Tool uses a classical or

AI algorithm).

Potential Issues:

• The Pre-Labeling Tool might have issues common to software tools like reading, writing or

processing data erroneously.

• It must be expected the Pre-Labeling Tool will not produce perfect labels.

3 Distribute Labeling

3.1 Purpose
Distribute the tasks to parallelize and speed-up the labeling or to allow cross-checks between the

labels of different labelers.

3.2 Inputs

3.2.1 Prelabels
The initial labels for the Source Data created by the Pre-Labeling Tool.

3.2.2 Source Data
See Source Data.

3.2.3 Labeling Instructions
Instructions on what and how to label the given Source Data.

3.2.4 Distribution Instructions
Instructions on how the Source Data or label targets should be distributed to different labelers, e.g.

• are the subsets on data, on label targets (for example, one labels cars and the other

pedestrians), or both,

• how the Source Data has to be sliced (consecutive data subsets, random subsets, based on

scenarios, …)

• how many subsets should be created,

• how large should the subsets be,

• is an overlap between subsets required?

3.2.5 Labeler Qualification and Availability
A list of available labelers with additional information, e.g.

• capacity (potentially influencing the amount of data for a labeler),

• qualification/experience (can influence the cross-checking).

3.3 Activities

3.3.1 Slice Subsets
Description: Based on the Distribution Instructions, the Data Distributor slices the Source Data,

Prelabels and Distribution Instructions into different subsets.

27

Output: Prelabel Subsets, Source Data Subsets, Labeling Instruction Subsets, Distribution Instructions

(refined, includes the documentation of the performed assignment)

Example: Consider an input of 1000 images with bounding-boxes of passenger vehicles and trucks as

pre-labels, four available labelers and the instruction to divide the labeling tasks based on the targets

(passenger vehicles and trucks) and split the data in two slices. Then the data can be split in 500 images

each, gets paired with one of the two labeling targets. The result are four subsets, each containing 500

images and the labeling instructions and pre-labels for one of the two targets

3.3.2 Assign Subsets to Labeler
Description: Based on the Distribution Instructions and the Labeler Qualification and Availability, the

Data Distributor derives the number of subsets (based on data and labeling target) and assigns these

subsets to the labelers. This activity may consider criteria like,

• qualification, experience and previous performance (for example for cross-checking),

• labeling volume capacity and

• availability.

Output: Subset Mapping

3.3.3 Distribute Data
Description: The Data Distributor distributes the subsets for Prelabels, Source Data and Labeling

Instructions to the labelers defined by the Subset Mapping.

Output: For every Labeler, a Prelabel Subset, a Source Data Subset and a Labeling Instruction Subset.

3.4 Resources

3.4.1 Data Distributor
The Data Distributor is responsible to distribute the data and/or labeling targets to different labelers.

4 Labeling

4.1 Purpose
Label the data to get labels for the source data which can be used for training the ML model.

4.2 Inputs

4.2.1 Source Data Subset
The subset of data to be labeled by the Labeler.

4.2.2 Labeling Instruction Subset
Instructions for the current labeler on what and how to label in the given Source Data Subset.

4.2.3 Prelabels Subset
The Prelabels for the Source Data Subset and the Labeling Instruction Subset. Only needs to contain

the label targets relevant for this labeler.

4.3 Activities

4.3.1 Label Data
Description: Here, the labeler refines the Prelabels by labeling the provided Source Data Subset

according to the Labeling Instruction Subset. This activity is highly dependent on

• the data to label (images, audio, tabular data, …),

28

• the target labels (boxes, classes, numerical values, text, …, or a combination thereof),

• the given prelabels (precision/recall of prelabels, accuracy, classes, …) and

• the labeling instructions (tolerances, …).

The created labels should also establish traceability of their creation. For example, information that

should be collected (ideally in an automated way):

• current state of requirements and instructions

• versions of data, Prelabeling and Labeling Tool

• Labeler

Output: Labels (including traceability)

Potential Issues:

• The Labeler could

o miss fixing pre-label errors (for example, misleading labels, see Pre-Labeling)

o introduce new errors by either

▪ breaking correct pre-labels or

▪ by introducing new, wrong labels.

o miss adding labels (which have also not been added by the pre-labeling).

Example: Given a set of audio files as data and automatically generated transcriptions of the spoken

words in those files (prelabels), the labeler listens to every audio file and modifies the prelabels to

exactly represent the spoken words. A challenge for the labeler might be that the prelabeling could

not distinguish different speakers in the same audio file. The labeler would then have to, in

correspondence to the labeling instructions, correct the transcribed text and assign the sentences to

different speakers.

4.4 Resources

4.4.1 Labeler
The Labeler executes the manual task of labeling a subset of the Source Data with a subset of the label

targets, given the prelabels of this data and label target subset.

5 Label Merging

5.1 Purpose
Merge the labels of different labelers to get a consistent set of labels on the full source data, to

possibly cross-check the labeler performance and to identify possible issues of the previous steps.

5.2 Inputs

5.2.1 Label Subsets
The labels for the Source Data Subsets.

5.2.2 Source Data Subsets
The subsets of data that have been labeled.

5.2.3 Analysis Instructions
See Analysis Instructions.

29

5.2.4 Distribution Instructions
Instructions on how the Source Data or label targets should be distributed to different labelers. For

details, see Distribution Instruction Derivation and Distribution Instructions.

5.3 Activities

5.3.1 Combine Label Subsets
Description: The Data Merger combines the Label Subsets based on the Distribution Instructions. The

Distribution Instructions specify on how the labels must be merged (data subsets and/or label target

subsets).

Output: Merged Labels (with possible inconsistencies)

5.3.2 Identify Issues between Subsets
Description: The Data Merger analyzes the Merged Labels (with possible inconsistencies) based on

the Analysis Instructions. The Analysis Instructions specify if and how the labels can be cross-checked

between different subsets

• due to a possible overlap between labelers, or

• due to inconsistencies between target labels (for example, if one labeler classified the same

area in an image as passenger car while a different labeler labeled it as truck).

Output: Merged Labels, Issue List

5.4 Resources

5.4.1 Data Merger
The Data Merger is responsible to merge the data, labels and issues from different labelers.

6 Performance Optimization (for Labeling)
This step cannot only be started after the whole labeling process is finished but anywhere during its

execution, whenever issues (in the generated prelabels, labels, specification, instructions, …) have

been identified.

6.1 Purpose
To improve the whole labeling process and to identify/resolve issues found in previous steps.

6.2 Inputs

6.2.1 Source Data
See Source Data.

6.2.2 Labels
See Labels.

6.2.3 Issue List
See Issue List.

6.3 Activities

6.3.1 Provide labeled data to Pre-Labeling Tool
Description After the Labeling successfully generated labels, these labels can be used to re-train the

Prelabeling Tool and improve its performance. This should reduce the further labeling effort and

speed-up the whole labeling process.

30

Output: Data for Retraining

Example In a first loop the Automated Data Prelabeling did not have enough information to apply the

Prelabeling Tool. Therefore, no prelabels have been created and the labeling process has been

executed only on a relatively small subset of all examples (for example 1% of the data). Labeling this

data required a lot of time as the labelers could not use any prelabels. After this small subset of data

has been labeled, the Prelabeling Tool can be trained and used for the remaining 99% of the data.

To further improve the Prelabeling Tool and speed up the labeling process, the next iteration of the

labeling process might only handle another 5% of the data, further improving the Prelabeling Tool.

This can go on until all data is labeled and might continue even later, if new data is added.

6.3.2 Management of Quality Anomalies
Description: This activity is applied for every issue identified in the Label Merging (or any other step

of the labeling process). The Performance Optimizer has to consider/analyze the given issue and take

the necessary steps to resolve this issue. This can include

• updating some specification, instruction, …

• fixing some problem of the data ac uisition or some involved tool (prelabeling, labeling, …),

or

• repeating some earlier process step (like a faulty labeling step, …).

Output: No dedicated output. Improves the quality of the label generation phase.

Example: Consider the speech-to-text problem detailed in the Label Data activity and assume the

Analysis Instructions specified to add some overlap between different labels to cross-check their

performance. While merging the labels, an issue with one target label was identified: while some

labelers only transcribed the spoken text, some also identified the speakers (with a list like SpeakerA,

SpeakerB, …). The Performance Optimi er traces this difference back to its origin. The result states

that while the Labeling Tool supports this identification of the speaker, the Labeling Specification did

not specify to do so. But as the overall task of the ML system under development requires to identify

different speakers, the Labeling Specification must be updated, and all steps influenced by this must

be repeated.

6.4 Resources

6.4.1 Performance Optimizer
The Performance Optimizer is responsible to trigger the improvements of either the Prelabeling or

any other step of the labeling process.

Annex B.3 Data Quality Assurance Steps
The process phase is structured similar as the Labeling and includes the following:

• Adapt to Labeling Specification and Source Data (for Label Checking)

• Automated Label Pre-Checking

• Distribute Label Checking

• Label Checking

• Label Check Artifacts Merging

• Performance Optimization (for Label Checking)

31

Due to the similarity to Labeling, no detailed description of the individual steps of Data Quality

Assurance is provided.

	1 Introduction
	2 Approach to establish a lifecycle and labeling process
	3 Background
	3.1 Labeling
	3.2 Common pattern recognition tasks on visual data

	4 Machine Learning Lifecycle
	4.1 Specification Phase
	4.1.1 Motivation
	4.1.2 Use-Case Specification
	4.1.3 Machine Learning Specification
	4.1.4 Data acquisition and preprocessing
	4.1.5 Selection for Labeling
	4.1.6 Labeling
	4.1.7 Selection for Training

	4.2 Implementation Phase
	4.2.1 Set Model Space Exploration Policy
	4.2.2 Set Hyperparameters
	4.2.3 Training
	4.2.4 ML Validation

	4.3 Verification- and Validation-Phase
	4.3.1 Verification
	4.3.2 Deployment
	4.3.3 Validation

	4.4 Operation- and Decommissioning-Phase
	4.4.1 Operation
	4.4.2 Decommissioning

	5 Labeling Process
	5.1 Overview
	5.1.1 Main Entities
	Data Owner Entity
	Labeling Entity
	Quality Assurance Entity

	5.1.2 Major Artifacts
	Labeling Specification
	Analysis Instructions
	Source Data
	Labels
	Issue List

	5.2 Process Description
	5.2.1 Procedure Control
	5.2.2 Labeling
	5.2.3 Data Quality Assurance

	6 Conclusion and Outlook
	7 References
	Annex A ML Lifecycle Diagram
	Annex B Detailed Process Description
	Annex B.1 Procedure Control Process Steps
	Annex B.2 Labeling Process Steps
	Annex B.3 Data Quality Assurance Steps

