Introducing the IBM Software Development Kit for PowerLinux

Wainer S. Moschetta
IBM, PowerLinux SDK Team Leader
wainersm@br.ibm.com
Acknowledgments

The information in this presentation was created with the assistance of Steve Munroe (sjmunroe@us.ibm.com), he is the PowerLinux SDK and Advance Toolchain architect.
SDK Elevator Pitch (what it can do for you)

- Support single source, cross platform, Linux applications
 - Port existing Linux Intel applications to PowerLinux
 - Develop new PowerLinux applications
 - Tune Linux applications for POWER

- Leverage Eclipse to Integrate existing Linux build and development tools
 - Import and use existing autoconf and Makefile projects
 - Integrates existing Linux Tools with Eclipse IDE
 • GCC, GDB, Oprofile, Perf, Valgrind, …

- Adds powerful PowerLinux specific tools
 - AT / GCC and associated tools/components fully enable and tuned for POWER
 • Improve/extend the function/usability of Linux tools
 - Tools to identify and convert Intel specific source to:
 • Platform independent GCC builtins
 • Correct struct/union for Big & Little Endian
 • Provide equivalent PowerISA builtins
 - Tools to identify poorly performing code and propose appropriate changes
 • In source context using meaningful terms
 - Identify lock contention and associate it specific locks and source files/lines
 - High level analysis of program behavior via CPI-Stack model

- It is a process, not an event
 - Continually adding features, improving function, lean/agile development
 - Driven by first hand experience and customer feedback
Software Development Kit concept

Remote Access

Eclipse IDE with Plugins

Eclipse CDT, PTP, LTP, ... C/C++ Dev Tools

Future
Quick-Fix
Automate

Integrate
Guide & Advise

Analyze
Visualize
Data Collection

Data Collection

Edit, Compile, Debug

Eclipse IDE with Plugins

Eclipse LinuxTools

IBM Tools

IBM Eclipse Tools

IBM Eclipse Tools

Edit, Compile, Debug

Edit, Compile, Debug

Source Code Advisor

Migration Advisor

Trace Analyzer

CPI Stack

Oprofile

Perf

Valgrind

Gcov / Gprof

RPM

Make Autoconf

IBM Confidential

Integrate
Launch Collect

Remote Access

Eclipse Plugins
IBM SDK for PowerLinux:
The quintessential development environment

- Standard Eclipse Integrated development Environment (IDE)
 - Extensible via plugins
 - Common look & feel across tools
 - Integrated help, accessibility, usability features

- Additional Eclipse.org plugins
 - C/C++ development tools (CDT) (Edit compile debug)
 - Linux Tools Project (Linux tool; automation, visualization, jump to source line)
 - Import standard Makefile and autoconf projects
 - Parallel Tools Project (remote PowerLinux server access)

- Enhanced with PowerLinux tools
 - Analyzer and Advisor Plugins
 - Migration Advisor (cross platform code porting with Quick-Fix)
 - Source Code Advisor (guided application tuning for POWER)
 - Trace Analyzer (analyze bottlenecks in threaded applications)
 - POWER7 CPI Stack model (with Drill Down to source/file)
 - PowerLinux community message board tool
 - Supporting tools (integrates with plugins above)
 - IBM Advance toolchain (latest GCC, tuned libraries, perf tools, multi-core libraries)
 - Feedback Directed Program Restructuring (FDPR)
 - Pthread Monitor trace tool
Introducing the new PowerLinux™ SDK

Available as:
- ISO image
- RPM packages
- YUM packages

IBM Java VM 1.6 included!!

What's new in 1.3.0
- IBM Eclipse SDK 4.2.0
- Updated CDT, PTP, Linux Tools
- Enhanced Migration & Source Code Advisors, added quick-fixes
- FDPR 5.6.1-9
- CPI analysis tool with drill-down
- Advance Toolchain 6.0
- New Integrated bug report

All in one place: the best tooling for Linux on POWER development

Give it a try and let us know how it goes:

© 2013 IBM Corporation
IBM SDK includes additional Power-unique features

- **IBM Advance Toolchain for PowerLinux**
 - Provides latest stable versions
 - Base toolchain (GCC, GDB, Binutils..etc)
 - Runtime library (GLIBC)
 - Performance tools (Valgrind and Oprofile)
 - Provides CPU-tuned libraries for performance

- Don't interfere with system's toolchain

```
[root@cheerios4p02 ~]# ls /opt/at6.0/
bin  bin64  etc  include  lib  lib64  libexec  libexec64  man  powerpc64-linux  sbin  sbin64  scripts  share  ssl
[root@cheerios4p02 ~]# ls /opt/at7.0/
bin  bin64  etc  include  lib  lib64  libexec  libexec64  man  powerpc64-linux  sbin  sbin64  scripts  share  ssl
```

Latest Advance Toolchain 7.0-0 available!
Download at ftp://ftp.unicamp.br/pub/linuxpatch/toolchain/at
Provided more specific tunings as needed
IBM SDK includes additional Power-unique features

- **Code Migration Advisor plugin**
 - Integrated with Eclipse context sensitive source tooling
 - Leverage CDT Codan (Code Analysis)
 - Integrated with source edit tools
 - Leverage CDT Quick Fix Processor to provide code fixes
 - Scan/Analyze application source for common migration issues
 - Data Endian dependent unions and structures
 - Cast with potential endian issues
 - Non-portable data types
 - Non-portable inline assembler code
 - Non-portable or arch dependent compiler builtins
 - Proprietary/Arch specific APIs
 - Performance degradation
 - Apply quick fixes
 - Common Intel specific inline assembler sequences
 - Non-portable or arch dependent vector builtins
See common migration problems in the code
Apply quick fixes for migration problems in the code

Example code snippet:

```c
int xchg(unsigned x) {
    asm("xchg %0, %1": "=&r"(x), "&m"(x) : "memory"
    return x;
}
```

Change preview:
- May be replaced by a built-in.
- Suggestion: `sync_lock_test_and_set`

For more information, consult:

Replacement:
- `sync_lock_test_and_set`
IBM SDK includes additional Power-unique features

- **FDPR (Feedback Directed Program Restructuring)**
 - FDPR is a feedback-based, directed, and post-link optimization tool
 - Usable from command line or from SDK (eclipse plug-in)
 - Works on both executable programs and shared libraries
 - Provides post-link global code optimization step
 - Tunes program to a representative workload

```
$ fdpr --instrument --train ./train_bzip2 --reset --optimize -O3 -m power6 ./bzip2
Instrumentation phase ...
Profiling phase ...
Optimization phase ...
```
• Source Code Advisor (Eclipse plugin)
 –Leverages FDPR Inter-Procedural-Analysis capabilities
 –Provides interactive feedback to the developer
 • In plain language and in source code context
 –Identifies hot spots in source code that need rework. Some examples:
 • High call overhead of a hot small function (inline function)
 • High branch penalty in a small loop (unroll loop)
 • Data cache pressure is caused by TOC-load instructions (Direct TOC access)
 • Heavy register-save prolog with dominant early exit (Reduce early exit)
 • (...)
 –Propose specific suggestions for:
 • Source code structure improvements
 • Compiler/linker options to use
Improve code efficiency with Source Code Advisor
IBM SDK includes additional Power-unique features

- **Pthread_mon (command line tool)**
 - High performance pthread (create, lock/unlock, condvar, etc) tracing
 - Multiple threads and processes
 - Selectable trace by API, levels of trace-back, ...

- **Trace Analyzer (eclipse plugin)**
 - Use to Identify lock contention and associate it specific locks and source files/lines
 - Correlates and displays traces
 - Pthread Monitor, SystemTap syscall, or both
 - Spot bottlenecks, IO/sleep/yield while holding mutex, ...
 - Multiple views
 - Thread Overview, Locks by thread, Hot Locks, Hot condvar, and more
Analyze thread usage using the Trace Analyzer
IBM SDK includes additional Power-unique features

- **CPI Tool**
 - Diagnosis tool that relates functional processor stages (pipeline) with performance counters to show which CPU functional unit is hitting stall conditions
 - Leverage PMU (Performance Monitoring Unit) for hardware events analysis in a systematic way
 - Implements CPI (cycles per instructions) breakdown model for POWER7 Systems
 - Commonly Used Metrics for Performance Analysis documentation available from Power.org
 - Provides a top-level view of the applications performance
 - Useful for comparing programs or versions of the same program
 - Clues to which hardware PMU events to look at next
 - Drill-down to specific source/line for specific HW events
Cycles Per Instruction Breakdown Analysis

<table>
<thead>
<tr>
<th>Event Group</th>
<th>% Contribution to CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM_CMPLUSTALL_2XU</td>
<td>7.26%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_DIV</td>
<td>3.81%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_2XU_OTHER</td>
<td>3.82%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_SCALE</td>
<td>0.02%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_SCALE_LONG</td>
<td>0.03%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_SCALE_OTHER</td>
<td>0.05%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_VECTOR</td>
<td>0%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_VECTOR_LONG</td>
<td>0%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_VECTOR_OTHER</td>
<td>0%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_2FU</td>
<td>0.05%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_REJECT</td>
<td>1.4%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_REJECT_OTHER</td>
<td>0%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_LSU</td>
<td>55.77%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_DCACHE_MISS</td>
<td>21.2%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_STORE</td>
<td>9.67%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_LSU_OTHER</td>
<td>21.19%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_3RD</td>
<td>0%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_IFU</td>
<td>5.67%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_BRU</td>
<td>0.09%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_IFU_OTHER</td>
<td>0.39%</td>
</tr>
<tr>
<td>PM_CMPLUSTALL_OTHER</td>
<td>0.01%</td>
</tr>
<tr>
<td>PM_GCT_NOSLOT_IC_MISS</td>
<td>6.54%</td>
</tr>
<tr>
<td>PM_GCT_NOSLOT_BR_MPR</td>
<td>0.9%</td>
</tr>
<tr>
<td>PM_GCT_NOSLOT_BR_MPRD_IC_MISS</td>
<td>2.48%</td>
</tr>
<tr>
<td>PM_GCT_NOSLOT_BR_MPRD_IC_MISS</td>
<td>2.48%</td>
</tr>
<tr>
<td>PM_GCT_EMPTY_OTHER</td>
<td>5.67%</td>
</tr>
<tr>
<td>PM_GRP_CMPL</td>
<td>11.04%</td>
</tr>
<tr>
<td>Overhead of expansion</td>
<td>-2.33%</td>
</tr>
</tbody>
</table>
IBM Power Linux SDK extends value-add plugins

- **Linux Tools Oprofile and Perf plugins**
 - Launch and analysis integrated with code development
 - Configurable for HW specific event profiling
 - POWER6/7 PMU events

- **Linux Tools Valgrind plugin**
 - Launch and analysis integrated with code development
 - Open framework for dynamic analysis
 - Memcheck, detects memory leaks and malloc/free errors
 - Cachegrind, cache and branch miss analysis
 - Helgrind, thread and data race analysis
 - Massif, heap and stack usage analysis
 - PowerISA features for POWER6/7
Integrated with PowerLinux Community

- Ask for PowerLinux community help from within Eclipse (NEW)
 - Create a report that contains source code, error markers, and logs to be posted in the IBM developerWorks PowerLinux Community message board.
 - You can include specifics about your question or problem.
 - Leverage our experts

PowerLinux Community is willing to help you!
Call for experts in PowerLinux community
Profile application performance with ease
Valgrind profile configuration

Choose any tool

Hit to run Valgrind
Develop from x86_64 computer

- Use the IBM SDK for PowerLinux directly on the Power Systems™ server
- Also allow you to use the IBM SDK for PowerLinux from your personal x86_64 computer for development (remote development to the Power Systems™ server!)
- Leverage PTP remote tools and RDT
Our participation in Eclipse community

- Actively engaged with Linux Tools
 - Contributed Helgrind plug-in
 - Contributed Perf plug-in
 - Implemented remote for most of Linux Tools plug-ins
 - Helped with the implementation of remote proxy
 - Many bug reports and fixes
 - Currently three committers

- Few bug reports to PTP and one fix

- Few bug reports to CDT and a fix to Codan
Testimonials - boosting performance in IBM InfoSphere Streams

- IBM Advance Toolchain for PowerLinux and IBM SDK for PowerLinux boost performance in IBM InfoSphere Streams on POWER

- The IBM InfoSphere Streams development team had a positive experience with the SDK.
 - InfoSphere Streams saw direct performance gains from using the Advance Toolchain compiler and optimized libraries.
 - Product code changes made as a result of SDK for PowerLinux application analysis further improved performance.
 - Performance hot spots in dependent Linux libraries where resolved by choosing alternative libraries or performance tuning critical runtime libraries.
 - These improvements where integrated and delivered in Advance Toolchain updates

- While results for other products will certainly vary, Customer related sample workloads built and executed within the InfoSphere Streams V3.0 product saw improved performance of between 26% and 166%
More information

- IBM Power Linux SDK landing page
- Introduction to IBM SDK LoP demo video
- Using Autotools with the IBM SDK LoP demo video
- PowerLinux Community blog posts
- Free support – TPL Message Board
 http://www.ibm.com/developerworks/group/tpl
- IBM PowerLinux SDK User Guide
 http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liaal/iplsdkmain.htm
- POWER7 Optimization and tuning Guide
 http://www.redbooks.ibm.com/redpieces/abstracts/sg248079.html

Give it a try on your application!!!
Summary

- The new Power Linux Software Development Kit (SDK) provides a traditional GUI for developing, porting, and tuning applications
 - Eclipse-based
 - Complete bundle of tools

- Power-specific features have been added to existing tools
 - C/C++ projects, OProfile, Valgrind, Helgrind and more

- New tools have been added for Power development
 - Post-link optimization (FDPR), Source Code Advisor, Trace Analyzer, Migration Assist, CPI Tool

- Begin using this tool today on Power or x86 Systems and help us improve it as we move forward
Special notices

This document was developed for IBM offerings in the United States as of the date of publication. IBM may not make these offerings available in other countries, and the information is subject to change without notice. Consult your local IBM business contact for information on the IBM offerings available in your area.

Information in this document concerning non-IBM products was obtained from the suppliers of these products or other public sources. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. Send license inquires, in writing, to IBM Director of Licensing, IBM Corporation, New Castle Drive, Armonk, NY 10504-1785 USA.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

The information contained in this document has not been submitted to any formal IBM test and is provided "AS IS" with no warranties or guarantees either expressed or implied.

All examples cited or described in this document are presented as illustrations of the manner in which some IBM products can be used and the results that may be achieved. Actual environmental costs and performance characteristics will vary depending on individual client configurations and conditions.

IBM Global Financing offerings are provided through IBM Credit Corporation in the United States and other IBM subsidiaries and divisions worldwide to qualified commercial and government clients. Rates are based on a client's credit rating, financing terms, offering type, equipment type and options, and may vary by country. Other restrictions may apply. Rates and offerings are subject to change, extension or withdrawal without notice.

IBM is not responsible for printing errors in this document that result in pricing or information inaccuracies.

All prices shown are IBM's United States suggested list prices and are subject to change without notice; reseller prices may vary.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are dependent on many factors including system hardware configuration and software design and configuration. Some measurements quoted in this document may have been made on development-level systems. There is no guarantee these measurements will be the same on generally-available systems. Some measurements quoted in this document may have been estimated through extrapolation. Users of this document should verify the applicable data for their specific environment.

Revised September 26, 2006
QA