
USING PAPYRUS IN A DESIGN
SPACE EXPLORATION TOOLCHAIN

CURRENT DEVELOPMENTS AT FLANDERS MAKE

2

Who is Flanders Make?

Aiming at product & process innovation
for the vehicles, machines and factories of the future

A Flemish research institute whose mission is

to strengthen the long-term international competitiveness
of the Flemish manufacturing industry by carrying out excellent,
industry-driven, pre-competitive research in the domains of

▲ Mechatronics

▲ Product development methods

▲ Advanced manufacturing technologies

3

Our partner network

http://www.melotte.be/en
http://www.jabil.com/

4

Outline

Use case

 Introduction

 Design space model

 Toolchain

Discussion

 Priorities

 Tool usability

 OCL framework

 Instance creation and visualization

5

Conceptual design of a robotic
assembly cell

 Product to be manufactured

 Casing for valve in ventilation system

Requirements

 Produce 40 cases per hour

 Fully automated, no operator involved

 Use existing machine repository

 Design cell with minimal cost

6

Conceptual design of a robotic
assembly cell

 Process steps

 Extract from bending machine

 Correct folding

 Join corners

 Join seam

Force

7
Static

machine?

Conceptual design of a robotic
assembly cell

What is the best way of producing this product?

 What machines do we use per process step?

– Different ways (“working principles”) to perform a process step

 How are these machines assigned to the process steps?

– Machines can be shared between steps (speed vs cost)

Robot with
end- effector? Separate

machine?

Join
Seam

Join
Corners

Correct
Folding

8

Approach: Computational design

synthesis

 Represent design problem in a formal

model (SysML+OCL)

 Design repository to store knowledge

for computational synthesis

 Automated transformation to a Mixed-

Integer Linear Program (MILP)

 Represent solution in SysML

 Explore more of the design space

at a lower cost

Conceptual design of a robotic
assembly cell

Analysis & Evaluation (MILP)

Design Repository + Problem
Definition (SysML+OCL)

9

Design space model
Problem definition

System-Under-Design, Objective & Requirements

Throughput must be at least
40 products / hour

Constraint, tagged with an objective
stereotype

SysML 1.1

10

Design space model
Problem definition

 Functional specification

 Simplified sequential process shown

Suggestions for more
intuitive representations?
- Textual?

11

Design space model
Design repository

Activities

 Activity hierarchy

 Assumes property and
parameter equivalence

– Inheritance

– Comparison through
OCL constraints

– Visualization in class
diagram

Resources

 Resource hierarchy

 Non-abstract leaves
redefine all inherited
properties and specify
their values

12

Design space model
Design repository

Working Principles

 Non-abstract leaves in the activity hierarchy

 Links to the resources needed to execute the activity

 Redefines properties and fills in their value, often based on

resources used

13

Design space model
Specialized profile

Extensive use of existing concepts

 Inheritance, redefinition (not present in ecore), derived union,…

 Limited set of problem-specific concepts needed

 Some only needed because of validation

14

Execute Transformation
(Java)

Formal Model of Design Problem
(Papyrus SysML+OCL)

Toolchain

Define System Under Design

Define Objective

Define Functional Specification

Mixed-Integer Linear
Program (MATLAB)

Solution(s)

Execute Transformation
(Java)

Execute MILP
Solver Define Requirements

Predict
Performance,
Cost, …

Solution in SysML

15

Automated Transformation to MILP
& Execution of Solver

16

Generation of Solution
Instance(s)

17

Excel Output

Working Principle Function Resources

“1” if function
allocated to resource

18

Back Transformation

19

Outline

Use case

 Introduction

 Design space model

 Toolchain

Discussion

 Priorities

 Tool usability

 OCL framework

 Instance creation and visualization

All of these points have
been added to the bugzilla

20

Priorities

0 Governance

 Clear priorities

 Bugzilla

1. Usability

 Simplification

 Documentation

 User-friendliness

 Customization

2. Robustness

3. Communication

4. Features

2010-2011 01/01/2015-now

21

Priorities

0 Governance

1. Usability

1. Simplification

2. Documentation

3. User-friendliness

4. Customization

2. Robustness

3. Communication

4. Features

You can implement all the features we are
asking for, but if the tool is too difficult
too use, we still won’t be able to get any
of our member companies interested

22

Tool usability

Shield the user from the complexities of SysML

 Typical DSL only needs a limited set of UML and SysML concepts

3%

97
%

SysML

classes

Used

Unused

2%

98
%

UML

classes

Used

Unused

19
%

81
%

Diagrams

Used

Unused

23

Tool usability

 Filtering of the content the user can use

 Limit the number of diagrams/tables

 Manipulate the new child menus

– Single new child menu, containing just the elements we need

 Simplification of the palette

+ documentation of
these features

24

Tool usability

+ documentation of
these features

Add elements to the palette and menus

with more complex functionality

 Pre-stereotyped elements

 Elements inheriting from a library element

 Synchronization between palette and new

child menu customizations?

– Currently requires double work

25

Tool usability

+ documentation of
these features

Add elements to the palette and menus

with more complex functionality

 Pre-stereotyped elements

 Elements inheriting from a library element

 Complex functions to perform common tasks

– Redefinition of all inherited properties

26

Tool usability

Additional validation rules

27

Tool usability

 Intelligent lay-outing of diagrams

 Automatic lay-outing

 Semantic lay-outing

e.g. Backtransformed solutions

+ documentation of
these features

28

OCL framework

OCL on activities is not supported

Custom OCL translation

 Manually created parser (monstrous spaghetti code)

 A proper implementation would require an OCL metamodel

29

Instance creation and
visualization

 Instances allow to

 Specify partial solutions as ‘expert knowledge’

 Debugging through validation of correct and incorrect instances

 Specification of context specific values

 Papyrus support for instances is lacking

 Instance creation is tedious

– Wizard, similar to MagicDraw, for creating feasible instances?

 No proper visualization provided

30

Conclusions

 Papyrus can be used as part of a computational design space

exploration toolchain

 General purpose languages such as SysML+OCL contain most of the

concepts necessary to express the design space

 Usability & customizability is a condicio sine qua non in order to

achieve adoption amongst industrial designers

 Design space exploration tools still require interaction with the

designer, which requires visualization of solution instances

 Papyrus seems to be a viable candidate to build upon, yet

there remains a lot to do…

QUESTIONS?
REMARKS?

Thank you!

