p

Behavioral modeling with Petri Nets for Verification

Behavioral modeling with Petri
Nets for Verification

Fabrice Kordon & Yann Thierry-Mieg

LIP6

1 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Context of this work
nfomation Soclery (j

L'p

The present courseware has been elabort
the MODELPLEX European IST FP6 project (

).
Co-funded by the European Commission, the MODELPLEX project
involves 21 partners from 8 different countries.

MODELPLEX aims at defining and developing a coherent
infrastructure specifically for the application of MDE to the
development and subsequent management of complex systems
within a variety of industrial domains.

To achieve the goal of large-scale adoption of MDE, MODELPLEX
promotes the idea of a collaborative development of courseware
dedicated to this domain.

The MDE courseware provided here with the status of open-
source software is produced under the EPL 1.0 license.

2 © 2008 LIP6

http://www.modelplex.org/
http://www.modelplex.org/

Behavioral modeling with Petri Nets for Verification

Outline

L'p

® Problems in software development

® Some consideration about distributed systems
® A first approach on behavioral modeling

® Introduction to Petri Nets

® Some formal definitions on Petri Nets

® Some properties of Petri Nets

® Component-based methodology for behavioral
modeling

® An industrial example (verified middleware)
® Some conclusions & perspectives

3 © 2008 LIP6

An introduction to
behavioral modeling

eFabrice.Kordon@lip6.fr
oL IP6, Université P. & M. Curie,
eParis, France

e Companion-site :

L'p

Behavioral modeling with Petri Nets for Verification

4 © 2008 LIP6

http://fabrice.kordon.name/ufsm-compagnon

Behavioral modeling with Petri Nets for Verification

Objectives of the course

eDistributed computing is increasing

e®Are we able to cope with increasing complexity of such systems?
® We need to specify systems more precisely

eFrom «boxes» to behavioral specification

eBehavioral modeling is important

e Simulation and testing are reaching limits

® There is a need for formal modeling

'P 5 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Contents of the course

GDproblems in software development

(P some consideration about distributed systems

) first approach on behavioral modeling

¥ Introduction to Petri Nets

Some formal definitions on Petri Nets

&P some properties of Petri Nets

. The modeling operation (methodological considerations)

G Training
%Use of a Petri Net environment: CPN-AMI

S Three stages
® play with one example model
e model a simple system
e model a more complex system

@Concluding remarks

up 6 © 2008 LIP6

L'p

Behavioral modeling with Petri Nets for Verification

Problems in software development
(especially for distributed systems)

© 2008 LIP6

Hardware versus software

L'p

e "“Hardware is, Software will"

Jd

7

Behavioral modeling with Petri Nets for Verification

® What is different between soft and hard?

~ Hardware

rqsfer . eh %

Rigid = S
P P

® Both may be unreliable
® Hardware: you die
® Software: you sell maintenance

Software

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Is software risky? (1)

@Governmen’r Accounting Office (1979)
W9 projects
& $7 000 000

3% 2% 47% 0 Payd/never used

B payd/undelivered

O reengineered, used
and dropped

O reengineered and
used

B used as is

P 9 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Is software risky ? (2)

QAnalysis on various project results in 1995 (The
Standish Group)

16,2%
Success
92,7% Total 31,1% Partial
failure failure

L'p 10 © 2008 LIP6

Why is software risky?

Observations
‘E*No standard (or a very few)
WMam’renance/evolu’non problems
WVer'y limited reuse

® Almost no method

v

The difference S/H
can be explained

p

Behavioral modeling with Petri Nets for Verification

Why hardware is better

High production costs

Thus, a need for big series

No way to correct a bugged chip
Hardware people have to be prudent

1 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

What is software

® A real product
® A "flexible" product

® Software production is not a «fully recognized»

engineering discipline (such as for building bridges or
buildings)

® There is no standard way to produce software
® Can it be standardized since it is «brain juice»?

® Most project lead to an «original product»
® Like an ceuvre d'art

Source: |.Sommerville ©1995

=
v

12 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Observation 1: Correcting or introducing changes, compared costs

x50

>
(\®)
-

>
[a—
S

>
)1

Relative cost

e
\®

L 1 |

. : : Test : .
Requirements Conception Coding . teegraﬁcon Evaluation Maintenance

@
P 13 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Characteristics of maintenance/evolution

We observe

® Slow correction process
® Collect reports
® Analyze reports
e Fixing/changing stuff
® TInstalling a new version...

® Reduced teams
® There is no way to maintain large teams when the product is in production

® Less and less safety when delivery gets far
® Possible side effects of a fix/evolution... essentially for large software
® Tt may be difficult to reconsider some choices
® Limited memory from the design.

P 14 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification
Intuitive vision of the

«software life cycle»

Requirement o

. Conception
analysis

Coding, unit Integration and Installation,
tests deployment

[}
P 15 © 2008 LIP6

Observation 2 : DIstribution cost for an application

" Design
- Codi%g
% Tests

®Maintenance

eveldpment.of a complex appl
I e

'+ adtjoncorresponds to the

:..-’ . "emerged part” of an iceberg
A e

o ae Perfective : 60,3%

: Adaptative : 18,2%
Corrective : 17,4%

others : 4,1%

Behavioral modeling with Petri Nets for Verification

What about model driven engineering?

@Developmen’r and Maintenance of industrial applications
¥ Are more and more complex,
MTechnologles change rapidly,
MNew «social factors» (users) in such systems,
MCcm be sold in «temporal frames» that can be small.

«Software Chronic Crisis» (Gibbs, Scientific American)

$ 100.000.000.000 in 1996 (source, Standish Group International)

Model driven engineering (prototyping)

IEEE : «A type of prototyping in which emphasis is placed on developping prototypes

early in the development process to permit early feedback and analysis in support of
the development process»

G4

(0
When sys‘rems are distributed,

Traditional testing is inappropriatel

L'p U, 17 © 2008 LIP6

L'p

Behavioral modeling with Petri Nets for Verification

Some consideration about distributed systems

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Lehman's Laws

@fonfinuing change

$ A program that is used in a real-world environment must change,
or become progressively less useful in that environment.

@Encr‘easing complexity

$ As a program evolves, it becomes more complex, and extra
resources are needed to preserve and simplify its structure.
O Lehman and Belady, 1985

'P 19 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

What's wrong with OOP?

L'p

1. OOA and OOD are domain driven

< DeS|9ns are based on domain objects, not available components
MObJec’rs end up with rich interfaces, not plug
MCONCLUSION Hard fo reconfigure and adapt objects

. Implicit Architecture

M Source code exposes class hierarchy, not run-time architecturel
M Objects are wired, not plugged together

M How the objects are wired is distributed amongst the objects
MCONCLUSION Hard fo understand and hard to evolve

. Implicit Reuse Contracts

M Idioms and patterns are hidden in the code
MCONCLUSION Steep learning curve for development and evolution

20 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

What about Components?

stable

A software component is a unit of independent
deployment without state

We know how to build components!

We don't understand how to compose flexible
pplications from components.

We should be thinking more about composition than
about components

P 21 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

What future for distributed systems?

@Evolu’rion of Distributed Systems is incredibly fast
@We are just at the beginning of their existence

@Iodays solutions do not support «tomorrow's needs»
S Scaling up
S P2P approach
S Hight reliability

@Problems with appropriate infrastructures?

Needs for a «new paradigm»?
$ We wait for about 27 years since OO-languages

'p 22 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Example of future applications: automatic highway (1)

@A car = distributed system
t*Many processors
@ Specific interconnection network
How to handle configuration?
WTask affectation
%Redundancy

L'p 23 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Example of future applications : automatic highway (2)

QRellablh‘ry of interactions gFaul‘r tolerance problems
MModelmg problem (p2p) ‘WUnr'eachable cars = ??2?
$ Analysis using formal @ car out
methods gCGP away for a while

@Sys‘rem must be Ambient ne’rwor'k

deterministic
M Pr'ogr'am generation

@ What you analyzgd
what you get

SGTU[" Lies __.-—_--;;“._.. = === e S

1'p 24 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Example of future applications : automatic highway (3)

QLar'ge scale system
@Lo‘rs of actors

@Leng‘rh of the system

Complex interoperability (p2p)
¢Car / car

@Ccr‘ / captors

@Ccp’rors / management stations

Dynamic adaptation

gManagemen‘r policies
Handling of events

Traffic control
Configuration: cars get in and out

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Needs for distributed systems

Two «classes» of customers (and needs)

Level 1:
increase speed of development, integrate a know-how in tools

(need for productivity)
$ Telecom, home applications, ...
Level 2:
Increase the reliability of systems by using formal verification

techniques
$ «Mission-critical» and/or «high-confidence» systems

@In both cases, there is a need for help in developing such

svstems
$ Modeling, verification, model transformation, etc.

P 26 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Why formal modeling behaviors of distributed systems?

@Because they are complex to capture

@Because we need to perform «automatic reasoning»
MDe’rec’r bad behavior,
%Ensur‘e that some properties are preserved,
Wetc.

@Modeling at a behavioral level is CRITICAL for distributed

systems
MESpecually when they become complex
MSome studies of proposed solutions must be performed prior to
implementation

P 27 © 2008 LIP6

L'p

Behavioral modeling with Petri Nets for Verification

A first approach on behavioral modeling

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Example of needs

® Example: behavioral analysis
@ Let us represent the execution of two processes...

N P R
S s
3 t S :
a : a i =
No relationship Procl->Proc2 Procl->SR
Proc2->R,S

1'p 29 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

State space for a N-processes system...

Each process = one dimension for execution

Be aware of original things (dead-ends, etc.)

L'p : source s¢ © 2002 LIP6

http://www.win.tue.nl/~fvham/fsm/index.html

Behavioral modeling with Petri Nets for Verification

So, why modeling?

To study the complexity of applications (here, due to the
parallelism)

S Communication

v Between hosts 874
ey, 74
v Between processes or threads o, SSe
S Concurrent access to resources (c "es 0/0/77 ,
O S Cop, " Ve,
& Synchronization ’776,)7 Y o ’Ls*co
v Rendez-vous, Qfo,,/. 0'77,0/e ”7,0/e
v Critical sections O/e+ +/Oh '\7}/
v Dedicated protocols ,0/ Ob/
There are other interesting domains for such an analysus)
MReal time
MEmbedded
MHybr'ld

L'p 31 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Modeling

eObjectives

JWOECIIH

/\l

Simulatio
| Analysi

. Transcr:p’ru‘

gExpecTed char'ac’rer'ls‘rlcs

® Easy modeling process Easy expression of properties
® Theoretical foundation CASE tools

Three types of notations
Natural language, Rigorous, formals

@®
P 32 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Natural language (or any informal ones)

"Natural” Might be "standardized"
Strutured text, graphics... Flow diagrams,
Textual algorithms...

m
® Nice and easy to define but...

® Ambiguous (multiples interpretations)
® Incomplete (partial specification)

® Inconsistent

® Various level of description

e Contradictory

'P 33 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Rigorous languages

Conceptual Syntactically defined Limited interpretation
foundations A grammar is proposed Should prevent from any
Propose a set of precise ambiguous interpretation
concepts
They support A few examples
m
m SA-DT, SA-RT
® Execution (suitable description) HOOD, OMT, OOA
® Simple inconsistencies detection UML

® May support program generation

'p 34 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Formal languages

Mathematical Formal description of Support for formal

foundations interactions verification
unambigious
They support A few examples
m m
e Execution Z, B, VDM, Algebraic specifications,
e Evaluation of the specification State automata, Promela
.y Petri nets...
validity TheOr'e

® Detection of unconsistenties Mode) Che:;'-bpoving
e Verification of properties SrPUCTUI"Q/ "9 bas d
® Program generation alysis

'p 35 © 2008 LIP6

L'p

Introduction to Petri Nets

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Formal methods: classification

Two types of formal methods
@é\lgebmic based

$ The system is described by means of axioms
$ The property to be demonstrated is a theorem
S Demonstration can be helped by a «theorem prover»
& Characteristics
® supports infinite systems, parametric approach, difficult to automate

@s’ra’re—explor‘a’rion based

%Behavior of the system is described by means of a formal language
$¥ The property to be demonstrated is a formula (invariant, causal)
$» Demonstration is performed by building the state space of the system

S Characteristics
® supports finite systems only, non parametric approach, easy to automate,
counter-example provided automatically

'p 37 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Petri Nets

Petri Nets approach is closer o model checking

S State space generator...

4 ... but properties can be deduced from its
structure

Qfamilies of Petri Nets

$Place/Transition
$ Colored

$ Stochastic

= Timed

$ Algebraic...

@We will focus on «simple» Petri Nets: P/T

'P 38 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Elements in a Petri net
gPe‘rr'i nets = bipartite graph

QA state transition model ®

O

% Resources k Places /
%Evolu‘rion k Transitions

S Evolution k Arcs + tokens (firing rule) T

'p 39 ® 2008 LIP6

Behavioral modeling with Petri Nets for Verification

The firing rule

e Defines the behavior of the system

@®
P 40 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

How to define the basics of distributed execution

Sequence

O—>—>O—>]—0O
Pl T1 P2 T2 P3

Synchronous communication

Pla © OP1b
Tla T1b
P2a (‘E_,.L” P2b

P3a Qf—J LO P2b

L'p

Par'allelism
P1 1 TZ P3
Bl S
O—>—O >|] >0
P1' T1' P2' T2'P3

Asynchronous communication

Pl T1 P2 T2 P3
O—>—O—>—>O
KﬁoBUff

O—>—O—>—0O
PI' TI' P2' T2'P3'

41 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification
First example:

two people waking up (1)

wakeupl goeatl inbathl outbathl readyl

sleepl (@) >|1 >|] > > >() ngnel

awakel eatingl washing1

Q noisel
aclock @—>-ringing bathroom

énoise2

awake2 eating2

sleep2 O ,ﬁ ,D ,O égoneZ

wakeup2 goeat2 inbath2 outbath2 ready2

washing2

L'p 42 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification
First example:

two people waking up (2)

wakeupl goeatl inbathl outbathl readyl

sleepl (@) >l >|] > > >() ngnel

awakel eatingl washing1

@ noisel
aclock O—)I::l ringing bathroom

@noise2

awake2 eating2

sleep2 O ,ﬁ ,D ,O égoneZ

wakeup2 goeat2 inbath2 outbath2 ready2

washing2

L'p 43 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification
First example:

two people waking up (3)

wakeupl goeatl inbathl outbathl readyl

steep1 () >Q >|| > > >() ngnel

awakel eatingl washing1

Q noisel
aclock O—)I::l ringing bathroom

@noise2

awake2 eating2

sleep2 O ,i ,D ,O égoneZ

wakeup2 goeat2 inbath2 outbath2 ready2

washing2

'p 44 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification
First example:

two people waking up (4)

wakeupl goeatl inbathl outbathl readyl

steep1 () >Q ﬂ >(®) > >() ngnel

awakel eatingl washing1

Q noisel
aclock O—)I::l ringing bathroom

@noise2

awake2 eating2

sleep2 O ,i ,D ,O égoneZ

wakeup2 goeat2 inbath2 outbath2 ready2

washing2

'p 45 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification
First example:

two people waking up (5)

wakeupl goeatl inbathl outbathl readyl

steep1 () >Q ﬂ >(®) > >() ngnel

awakel eatingl washing1

Q noisel
aclock O—)I::l ringing bathroom

énoise2

awake2 eating2

sleep2 O ,ﬂ ,Il ,O égoneZ

wakeup2 goeat2 inbath2 outbath2 ready2

washing2

'p 46 © 2008 LIP6

First example:
two people waking up (6)

wakeupl

goeatl

Behavioral modeling with Petri Nets for Verification

sleep1l O)Q
awakel

Q noisel
aclock O—)I::l ringing

énoise2

awake2
sleep2 O)ﬂ

wakeup?2

L'p

goeat2

inbathl1 outbathl readyl
® O O Ouont
eatingl washing1

bathroom leave

B

eating2 washing?
-® O O

inbath2 outbath?2 ready2

47 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

First example:
two people waking up (7)

wakeupl goeatl ilji.bathI-_ outbathl readyl
seent O] @ O Qe
awakel eatingl .

Q noisel
aclock O—)I::l ringing bathroom

énoise2

awake2 eating2 washing2
égonez

o O

wakeup2 goeat2 inbath2 outbath2 ready2

48 © 2008 LIP6

L'p

First example:
two people waking up (8)

wakeupl

goeatl

Behavioral modeling with Petri Nets for Verification

sleep1l O)Q
awakel

Q noisel
aclock O—)I::l ringing

énoise2

awake2
sleep2 O ﬂ

wakeup?2

L'p

goeat2

inbathl1 outbathl readyl
-® O O Qo
eatingl washing1
bathroom leave
B
eating2 washing2
@ O
inbath2 outbath?2 ready2
49 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification
First example:

two people waking up (9)

wakeupl goeatl inbathl outbathl readyl

steep1 () >Q ﬂ > >(®) >() ngnel

awakel eatingl washing1

Q noisel
aclock O—)I::l ringing bathroom

énoise2

awake2 eating2

sleep2 O ,ﬂ ,B} ,@ égoneZ

wakeup2 goeat2 inbath2 outbath2 ready2

washing2

'p 50 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification
First example:

two people waking up (10)

wakeupl goeatl inbathl outbathl readyl

steep1 () >Q ﬂ > > >(®) ngnel

awakel eatingl washing1

Q noisel
aclock O—)I::l ringing bathroom

énoise2

awake2 eating2

sleep2 O ,ﬂ ,B} ,@ égoneZ

wakeup2 goeat2 inbath2 outbath2 ready2

leave i;/

washing2

P 51 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification
First example:

two people waking up (11)

wakeupl goeatl inbathl outbathl readyl

steep1 () >Q ﬂ > > >() @gonel

awakel eatingl washing1

Q noisel
aclock O—)I::l ringing bathroom

énoise2

awake2 eating2

sleep2 O ,ﬂ ,B} ,O é)gonez

wakeup2 goeat2 inbath2 outbath2 ready2

washing2

L'p 52 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

The state space for this model

@Expr‘esses all possible behavior

ready2: <..>

in the system
M26 states

bathroom: <..>
ready2: <
eatingl:

goeati

bathroom: <..>
ready2: <..>
awakel: <..>

washing2: .
eatingl: <..>

wakeup1 outbath2 goeatl
noisel: <..> washing2: <..>
E::grgom . awakel: <..>
MIn’reger vector repiresentin

2 wakeup1

bathroom: <..>
eating2: <..>
awakel: <..>

noisel: <..
washing2 .
sleepl: <..

marking of places

inbath2 wakeup1

Expresses mde’rermmnsm (.

of a parallel execution
N\
S TInterleaving of actions

washingl: <..

goeat2

noisel: <..
bathroom: <..
awake2: <..
sleepl: <..

inb

goeat1

goeat2

wakeup?2

53

inbath1

bathroom: <..>
eating2: <..>
eatingl: <..>

wakeupl wakeup2

bathroom: <..>
gone2: <..>
gonel: <..>

bathroom: <..>
ready2: <..>
readyl: <..>

outbath2

washing2: <..>
readyl: <..>

inbath2

bathroom: <..>
eating2: <
readyl: <..

outbath1 ~ 90¢at2

bathroom: <..>
awake2: <..>
readyl: <..>

eating2: <..>
washingl: <..>

goeat2

outbath1 wakeup2

awake2: <..>
washingl: <..>

& wakeup2 outbath1
gokgt2 inbath1
*
*
< batir(z)om: <..> noise2: <..>
awake2: . sleep2: <..>
eatingl: <..> washingl: <..>
N .
goeat1 wal@ng inbath1

bathroom: <..>
awake2: <..>
awakel: <..>

noise2:
bathroom:
sleep2:
awakel: <..>

up1

noise2: <..>
noisel: <..>
bathroom: <..>
sleep2: <..>
sleepl: <..>

aclock: <..>
bathroom: <..>
sleep2: <..>
sleepl: <..>

© 2008 LIP6

noise2: <.
bathroom:
sleep2: <.
readyl: <.

>
<.
>
>

Behavioral modeling with Petri Nets for Verification
Building the state space

(also called reachability graph)

It is important to relate the network with its reachability graph
Representation of a state as a vector of place marking

t4

*‘i@@,l,p \O<z,o,o,1,1>
\ ’dkg,o,z,o,b /
t3

13

2 1
f&gm,l,o,l, .
+1 2

Mb/a,l,o,o,b

'p 54 © 2008 LIP6

L'p

Some formal definitions
on Petri Nets

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification

What is a Petri Net

Qbefiniﬁon: a Petri net is a tuple PN =< P, T, Pre, Post > where
$ P = finite (and non empty) set of places
v'Represents «resources»
$1" = finite (and non empty) set of transitions distinct from P
v'Represents relationships between resource consumption and resource production
$Pre: PxT — N
Pre(p,t) = n represents how the firing of ¢ is related to a resource in p
if n = 0, then, no relation, if n > O, then, n tokens are required in p to fire ¢
$Post: PxT — N

Post(p,t) = n represents how the firing of ¢ is generates tokens in p, n tokens
are produced in p when ¢ is fired

$Mo= the initial state noted of the system

9 < PN, My > denotes a System with its initial state

1'p 56 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Initial marking, example

@Ini‘rial marking

Pi

=
OONHE=W

Remind, each state in the state space is represented using a
vector of places

'P 57 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Firing a transition

gFir‘ing rule

¥ ot € T can be fired from a marking M/ iff forallp € P, M(p) > Pre(p,t)

$if ¢ can be fired, then, its firing leads to a new state \/ "build as follow

Vp € P, M'(p) = M (p) — Pre(p,t) + Post(p,t)

$Firing of ¢ is noted: M[p>M’

L'p 58 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

«Firability» of a transition, example

@ 2 and # can be fired from M,

gWe can note this: 1‘7\[() [f2 > and A[(‘) [f4 =

up 59 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Firing a transition, example (1)

QLeT us fire 2 from \/,, then, we reach a new state/\/,

=
|
OO -

@This can be noted My[t2 > M,

'p 60 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Firing a transition, example (2)

QIf we fire # from M, then we reach a new state 1/,

Pl P2 P3

o

2 3 2

e
|
WOOWW

@This can be noted Mpy[td > M

L'p 61 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Firing sequence
@Definition:
A sequence of firing from)/ to), is a word 1o...t,, 1 where
there exists marking\/,. ..., M, verifying

'P 62 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Firing sequence, example

Q 121413 is a firing sequence fromy,

P1 P2 P3

(¢ Mg[tg > Ml[t4 > Mg[t;), > My

tl t5

P4 P5

: ! ; 1

1

MO — | 2 M1 — | 2 M3 — |0 M4 — |0
0 6 6 3

0 0 3 2

'p 63 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Incidence matrix

QLet be PV a Petri net. We define |/ the incidence matrix of PV
where:

W = Post — Pre

QFrom the firing aspect, let us consider that for\/[t >)/’, we have:

Vp € P,

M'(p) = M(p) + Post(p,t) — Pre(p, 1)

M'(p) = M(p) + W(p,1)

'p 64 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Reachability 6raph
(state space for the system)

@Definition: the reachability graph for a system < PN, A/, > is a
transition system (a transition graph) < (). A, A\, g >where:

() is the set of marking that can be reached in PN from M
Q={M | MecNF and Jo € T*/ My[oc > M}
$Ais the set of arcs that relates two reachable states in PN from)/,

{(q1,q2) €Q xQ |t €T,qi[t > g2}

¥\ represents arc label (name of the transition fired in °/\V')

(o represents the initial marking \/,

Ip 65 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification
Sample algorithm

to build the state space

gEasy to understand...

newSates = M
== {]\[()},wld, My >
while newSates # () do
crtState = extracElem (newSates)
newdates = newSates - crtState
for Vt € T do
if crtState [t > then
crtState [t > nextState
N if — nextState € G then
Create nextState
G = G + nextState
newSates = newSates + nextState
fi
G = G + arc between crstState and nextState
fi
done

done .
9 but return G IS

'p 66 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Some remarks on the reachability graph

@The generated state space (reachability graph) is

related to both P1
\J

& pN

g MO t1

A state space can be infinitepz
A finite state space may contains infinite sequences

? P3: <..>

3

P2: <..>

t1 2

8 Pl: <..>

'p 67 © 2008 LIP6

L'p

Some properties of Petri Nets

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Type of properties

@VBehavior'al properties

S Verification of a formula on the associated state space
eNeed to deploy the reachability graph

MTwo types of behavioral properties
e Safety (formula to be verified by all states)
use of formula on states or on transitions
e Causal (relation between two or more states)
use of temporal logic

'Structural properties

MRela’red to the structure of the specification
e®No need to compute the reachability graph

WThe correspond to patterns in the reachability graph

'p 69 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Model checking and temporal logic

Temporal # timed management
% Causality between two actions
Set up «good» relationship between critical events in the system

Safety
Search for a given state configuration

Temporal

Operators
® possible in the future, always in the future,
eventually

Atomic properies
e safety-like formulce
Several temporal logic
@cTL (computation tree logic)
@LTL (linear time logic)
CTL* (both)

useful to check for specific states (safety) or causal
properties (femporal formulee)

Qo
p 70 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Place invariants

Pondered marking over a set of places = constant (depends on the

initial marking)
¥ This formula is verified all over the reachability graph

) (o , <0,0,0,2, ‘
P

pl
Y2 u s
b3 00111 .
t1 J
3
p4 ~

On the example:
& 2%p2 + 2%p3 + 2% s
¥ p5

> - ‘ ~ — ‘
g

eful o check for sequences (threads) or to verify mutual
exclusion

/2 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Transition invariants

gsmﬁonar‘y sequence (when it can be fired)

’ <00,0,2,1>

20011

= t4 useful to check for
expected ciclic behavior

@
P 72 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Structural bounds

Min/Max number of token in a place

'"WARNING: structural means may never be reached
$¥ Depends on the initial state of the system

@On the example 5 ps
*p2:[0..1]
%3 [0... 2]
%p4 : [0 ... 2]
%pl : [0 ... 2]
®p5:[1..1]

useful o check for communication bounds and feasibility of
model checking

P 73 © 2008 LIP6

L'p

Behavioral modeling with Petri Nets for Verification

Component-based methodology for behavioral
modeling

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Modeling strategy

Model = «story»

$¥How to build the model (what abstraction level, what choices)

$ The story relies on components (execution sequences, threads, etc.)
$ The story brings modeling hypotheses

$ «Good questions » must be raised for a given specification

@Iypical example: structural properties (several use)
$ To check the design
., ®Such properties should be there (otherwise, things could be wrong)

$ Then, to verify the model
® Properties dedicated to the expected properties

'p 75 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Modeling and verification process

@The process
\/

S Evaluate what do you want to model (1)

S Evaluate what properties do you want to verify (2)
S Select your abstractions (according to 1 and 2)

& Desigh your model

& Check for «expected properties» (from the

$ Verify the model's properties

Such a process may seems complex for «simple
STt is the only way to avoid waste of time for larger ones

For larger models, it is necessary to combine with modularity

$ Then, the process is refined at each level
® The process is applied for each module - local verification
® Assemblage is then performed
® The process is then applied for the entire module

'p 76 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Module interactions

Rasic interactions
& Channel place asynchronous
$ Shared transition synchronous

More elaborated
$ Subnets with specific behavior assembled using basic interactions

But sophisticated interaction can be resumed to the basic ones
$ Sophisticated interaction is seen as a component (glue in the previous slide)

Advantage:

$ Keep on canonical mechanisms

S Encapsulation of high level mechanisms (UML?)

S Preservation of some properties (under certain conditions)

'p 77 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Channel places - place fusion

/{’D"\
_
Y

- “back backk =T T T T T T T T T
Qgr‘eser‘ved properties - _bas

$¥P-invariants may be found (or
composed) in the resulted

model call
® Under certain configuration... > >
® This is useful to keep tracking
the «expected properties»
- M /
e (O —

'p 78 © 2008 LIP6

Transition Fusion

@\Remark

$¥P-invariants of the
resulting model are a
superset of the union of

component’s invariants
e Under certain conditions

L'p

Behavioral modeling with Petri Nets for Verification

|

|

_I ______________ -~ - |
™ | . -~y

Tsync Tsync 1/ |

B - |

Tsync
79 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Modularity and basic interactions

QObJecTive: manage large applications

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Applying the process to a simple example

Modeling two simple CORBA components
S .

%A client

S A server

$ Both cooperate to send/receive requests

Client host Server host
....................... Network
Client Server

: < <> :
Stub Skeleton

L'p 81 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Modeling and assembling the client side

Client Stub

P 82 © 2008 LIP6

Client side: assembled

/—>© Csl

p

Behavioral modeling with Petri Nets for Verification

83 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Server side (same approach)

Sret

1'p 84 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Assembling (higher level)

empty = fusion of the interfaces
(NeTwo&Twor‘k I ©<_\
r‘\ o o j Lsl
Cecall I:El—»@ SCall ~ SScall >Q Scall
Celse Selse
e é Csw Csszé CSSIQ Q SSs1 é SSs2 Ssw (5 ==
Cget I:EK £ Ceet / %{—O{—é Sret

e

85

Ls2
IF__ B
) Netwo’fwor'k)

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Assembling (higher level)

=]

Lsl

Ccalll:Ei—»@ 1« ~ /—H:; >Q >|:ijcall

SScall

Selse
— Csw CSs2 csg@ @ssu SSs2 Ssw o

SCget
Cget EEK Q(é gt J %{—O(—!il Sret
Back
% Cs2 O(Ss2 é—/

1p 86

© 2008 LIP6

Controls at every stage

@For the client

Celse

[.
A

—pé) Csl

Lcl

Ceall I:‘ 'j—)@

<5Csw

Cget r:K—Q

gFor the client stub_

Lcl

Lc2

p

Behavioral modeling with Petri Nets for Verification

@For assembled Client

local communication loop

For the server and stub
and assembled server side

O . .
& As for the client and client
stubl!

@For the whole system

W‘rhe computed ones
Mcmd some related to

communication

sst (De——

Ls1

]—)O—NJLI Scall

Selse
SSs2 Ssw _ I Al

j(—O(—r'L\ Sret
Ls2
Ss2 (bi

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification

The invariants (from CPN-AMI)

Expected invariants

CORBA.mco.root.1

New invariants

CORBA.mco.root.1

RV

v

p WYY FAL=) e

vu Y ZUUD LLFO

Behavioral modeling with Petri Nets for Verification

Elements of analysis (from CPN-AMT)

. @17 nodes and 24
seel: <> arcs

(Ccssl: <..>
Ssl: <..>
Csw: <..>

Lel: <..> Msg: <..> Lsl: <..>

sSsl: <..> §ssl: <..> sss2: <..>

cSsl: <..> CSs2: <..> CSs2: <..>

Ssl: <..> §sl: <..> Ssl: <..>

Csw: <..> Csw: <..> Csw: <..>

SCall

@Good properties
MNO deadlock (loop)

%Pro’rocol without

loss
sgsz: <> ® Safe network

Ssl: <..>
Csw: <..>

Selse

SSret
SCget
Le2: <. Selse
SSsl: <
CSsl: <.
s Selse
Cget

Selse Selse Selse
pSelse Celse —»b—c«:au ScCall —»b—ssml —»b

§8sl: <..> sssl: <..> Lel: <..> .
CSsl: <..> CSsl: <..> SSsl: <..> Msg: <..> LSlé~<;'>
Ss2: <..> §s2: <..> cssl: <..> $8sl: <..> S8s2: <..>
Cs2: <..> Csl: <..> Ss2: <..> CSs2: <..> CSs2: <..>
Csw: <..> Ss2: <..> Ss2: <..>

Csw: <..> Csw: <..>

1p 89

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Variation?
loss1
Sf,,oi\/ehx
/—)® Csl (\ S/70 egl'es,

Yoy

Msg Cons . Ybe
Lcl Ls1 o/ -,

Sled

Cecall é >)é > —
O SCall) (" SScall

Celse Selse
m— Csw CSs2 CSsl (12 (?SSsl SSs2 Ssw -
. A

SCget SSret
Cot o Ot/ N O s
Lc2 Ls2
Back

% Cs2 - / Ss2 é—/

loss2

L'p 90 © 2008 LIP6

L'p

Behavioral modeling with Petri Nets for Verification

An industrial example (verified middleware)

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Introduction: what is PolyORB

@Qchizophrenic middleware

$vExperience gained on a middleware architecture
A ic midd| b ified TEL o
= A very generic middleware + can be verifie Paristech

@
$http://www.polyorb.eu.org m I! p

- . iect\Web
@Wha’r is PolyORB's global architecture ObJ oepegu[rcewdmeware Y
APT (applicative) °*°° Libraries
«neutral» core layer (reused) /Jb roker for

Services

APT (protocol) *°*°

Similar to a scheduler in
an operating system

P 92 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

HBroker's structure

QSnIiT the specification

@Envir‘onmen‘r: represents identified and

required behavior only e e e e e — - - - 1\mM
System: represents the implemented | =
solution according to expected pr‘oper’ries: 3
Environment I Sources & Events g
gBehavior‘, Sources (how many) : S
Events < =+

vstem
Store incoming events (to be processed)

® Choice of a store policy (FIFO, 3
priority, etc.) ®
Execution Core 2
® Choice of a strategy ~
e No tasking 3
® |eader/Follower
e Half-sync/Hald-async,
® etc.
J

Q
Ip 93 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Sources & events : interface

Reg_Source_B Reg_Source_E Ureg_Source_B Ureg_Source_E
\/ I v [
Sources & Events - o
ModifiedSRC
A | A I
Chk_Source_ B Chk_Source_E Abrt_Csk_Src_B Abrt_Csk _Src_E

[}
P 94 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Sources & events: hypotheses and implementation

@I—iypo‘rheses

$ Sources are statically declared (number of sources remains constant in a
cconfiguration)
MModelmg choice: recycling of events in the model

Register_Source_B

Unregister_Source_B Abort_Check_Sources_B
D4 ‘ D4 —
Sources ‘ Thread o
<ts> Sources <ts> / \
<
Y. <S> p <82> » Y [s=s2] s
NoSigAbort
< T gl » ¥ SetSigAbort
<s2> Unregister_Source_E 7Y g
Threads A
Register_Source_E Check_Sources_B SigAbort
Threads Threads ‘ Y
e Gl e " Ve ' 5V 1 [<=1 NopAbort
: InjectDataOnSrc | Canln_]ectEvent ‘ <
I Sources G < <>
| : 4 l_s')]) ¥ ‘\“ ‘ ®
! <s> - el
External «wor'ld»I IsAbort
______________ P o Abort_Check_Sources_E
ModifiedSrc ‘4 T WY Threads
Sources IsEvt
<S> <t <>

C

heck_Sources_E
Threads

Ip 95 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Structuring the System Core

Dispatching of actions
'Fetch/Decode and Execute
'Similar to a micro-processor

Event storage between the leader sre/evt
thread and the follower ones ¥

‘§Using the storage component '

A scheduler must choose the
thread to be executed (if
multithreaded policy)

Storage :.‘

Several possible implementations
No tasking
'Leader Follower
'others not experienced yet

Q
Ip 9 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

HBroker, a first model (no-tasking = mono-threaded)

Check_Sources B

It<t> 4<t> S*<t>
ﬁ % QueucJobB
DI
NG 10 L 10 L 10 10

2 Threads
<t>

<t>
NotifyEventEndOfCheckSourcesB é
7

FetchJobE

FetchJobB
Threads

reads

NoJob
<t>
'WillPerformWork

Sourc IT;,,M,A — — -I) EnterCSTCS
Domain Q‘ ~
DI is <Threads, Jobs>; <>
D4 is <Threads, Sources>; I I
D6 is <Jobs, Sources>;
\ga‘;hbs‘ I IsEvt I - . - . S . . -
J1,12,13. 4.5, 76, 7, 8,9, 10 in Jobs;
xXecute
52 in Sourc I I
msl, ms2, ms3, ms4, ms3, ms6, ms7, ms8, ms9, ms10 in Source:
tin Threads; Check_Sources_E
12 in Threads; I <® Threads I
LeaveCSTCS I
<msT> <msl>+<ms2> [I8 C — Schedule_Task_B
<M1 >+<ms2>+<ms 3> ModifiedSre l Threads
i] — e < o o—t> W m— Y co— <Threadmall>
<) Threads I > T
[s 0 T [Q
@ |
<tihsl> [<tmsI>+<tms I>+<tnftms g fh 15T ms?>F<t s3> F<tmsd>+<tms3 I <
D4 AvailableJohJd I
Johs
QO
<t,s> <Jobs.all> I
I Threads 6/7
<\>ﬁ
Crealed.lnbsl <>
=0 I\<i .s>4,OL<j >
] Threads <ty> 2 N I
1 NotifyEventJobQueuedE NotifyEventJobQueuedB
]E ’L—l D1
> > 1> > <> i <t>
JhCnt <
Threads () ThreadsQ) Threadg) Threads]) Threads s
<t> 2*<t> <> I
JobExist cJobCnt
10|
NotifyEventEndOfCheckSources I <tj> Threads
<>
NotifyEventEndOfCheckSourcesE Perform_Work_B
Threads | o it no scneaduler

MustCheck

Perform_Work_E
Threads <t

Threads

F e.l. c h / d eco d e EgTry,Chcck,Sources,E
Try_Check_Sources_B
Threads

a4
v
- o e e o e e e e e B R

DummyOR2

IS5
-— —_— _— —_— _— —_— _— —_— _— —_— _— —_— _—

O
~N

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification

HBroker, a new model (for fun!): FIFO+multithread (leader/follower)

— e = =y r___

| schedulerl
I

® 89 places

- ———— ® 72 transitions

- — =]| Sources

|
|
|
|
|
| e 289arcs
I Events |
I_ ________ 3 EEEE‘%SST" — I Parameters
I sont requis p(lur V|S|onnelr p@gel I I Smax
I | ===l ! * # of sources
|
I fetch/decode I : I
| ' I T
: I I I ® | max
I 1| I e # of threads
I 1 |
| I |
: I — e — 'Bsize
————————————— e FTFO size

1'p 98 © 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Properties

@Pc

$ symmeftries : threads and sources are not ordered

Pq is a preliminary property

$ Enables the use of symmetries and generation of the symbolic reachability graph
e

$ No deadlock: the system never blocks

P-

& : : L
$ FIFO management: no possible attempt to insert an event twice in the same

FIFO slot
@

* No starvation: Any incoming event will be processed

Such a model can be analyzed with appropriate toolsl!!!
AND UNDER APPROPRIATE CONDITIONS

Cw

«

p 99

© 2008 LIP6

About the appropriate conditions...
First view at the event-storage component

e Component's interface

QueueJobB QueueJobE

v

Behavioral modeling with Petri Nets for Verification

Component's implementation

QueueJobE

<t>
Empty

<t,j>

Threads

etchJobB <
hreads

<t>

>
<tj>

etchJobE

D1 Y,

100

QueueJobB
1
<tj>
s <xX>
QueueAJob <1> IC'}C“:
j ounter
<jx> <X++1>
MAX_Jobs

JobList
D2

X>

<y>
FetchAJob)\ OutCnt

[x=y] > Counter
<y++1> J

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification
Optimized view
at the event-storage component

[.
¢ Componem- s interface Component’s implementation (5 slots)
Un .
%l;eueJObB fo/d’ng f the
. tj>> pr'eVious he
QueueJobB QueueJobE) D D) .

* * mil fil mi2 2 mi3 |63 mi4 |64 mis | fiS
\4 : . | . |

QueueJobE 4 o 3 4 f5

Threads Jobf:vl <|> Jobs Jobs Jobs Jobs

<j> <j> <j> > > FetchJobB

A
mo2 mo3 mod Threa s
mol \ \ \ \
® ® PO
FetchJobB FetchJobE FetchJobE

Changing the implementation does not raise any problem

This implementations does not destroy the symmetry (Po is verified)
p 101 © 2008 LIP6

Benchmarks: State space size

gsmax =D, Bsize = B, Tmax Varies

Behavioral modeling with Petri Nets for Verification

1,E+16 /
1,E+14 /
1,E+12 /
1,E+08
_ B— —{]
1,E+06 -
1,E+04 :'/./’/ —e— Ftats conc. |
1,E+02 —&— Gph quotient —
—o— Gain
1,E+00 1 1 1 1 1 1 1 1 1 1 1 1
v s NS TN SN BN S
L'p 102 © 2008 LIP6

Benchmarks: execution time for

Execution time to produce the full state
space (mono-processor)

140000
120000 /

100000 /
80000 /
/ 350000
60000
/ 300000
40000
// 250000

20000
0 +_0¢k‘/‘/ ; —20606060

Behavioral modeling with Petri Nets for Verification

For P3, number of visited states

(due to an asymmetry)

@® symbolic
SSP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

. . 150000
Experiences in parallel model checking

(less than one hour for 17 threads on a 2200000
bi-processor nodes cluster)
50000

o 0
P

.(?/6 .r.@% © 2008 LIP@

L'p

Behavioral modeling with Petri Nets for Verification

Some conclusions and perspectives

© 2008 LIP6

Behavioral modeling with Petri Nets for Verification

Conclusion

It is possible to use Petri Nets for the verification of very complex systems
$ This was performed using CPN-AMI («around version 3.0»)
$ But everything was done «by hand»

There is a need for appropriate tools if ones want to manage large

specifications
$ Usable by engineers
& Connected to standards?
® Is UML OK? How to make it usable?
® Already experienced: Torino, Hamburg, etc.
e LfP:an UML profile (RNTL-MORSE project)

So far what has been introduced in CPN-AMI
$ PetriScript: a language to generate Petri Nets
e Constructors
., ® Operators (merge, fusion, manipulation of sets of places or transitions)
& New optimization techniques for model checking
® Use of the Petri Net's structure (the SPIN community has a similar strategy)
® Use of new compact representations...

P 105 © 2008 LIP6

http://www.lip6.fr/cpn-ami

Behavioral modeling with Petri Nets for Verification

Perspectives

@Ihe industry is interested
$ Critical systems

There is a need to manage time and/or performances too
$ Even for distributed systems

Relation to implementation
S Possible is specific cases (such as PolyORB)
$ However, this is a challenge (MDA, Prototyping)

New experiences to be done with the new developed tools
$ More with PolyORB

® Verification of a given configuration

® Integration in the Production process
S Intelligent Transports Systems

® Validate strategies at an early stage of the design

P 106 © 2008 LIP6

