
Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 1

Behavioral modeling with Petri
Nets for Verification

Fabrice Kordon & Yann Thierry-Mieg

LIP6 

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 2

Context of this work

• The present courseware has been elaborated in the context of
the MODELPLEX European IST FP6 project (http://
www.modelplex.org/).

• Co-funded by the European Commission, the MODELPLEX project
involves 21 partners from 8 different countries.

• MODELPLEX aims at defining and developing a coherent
infrastructure specifically for the application of MDE to the
development and subsequent management of complex systems
within a variety of industrial domains.

• To achieve the goal of large-scale adoption of MDE, MODELPLEX
promotes the idea of a collaborative development of courseware
dedicated to this domain.

• The MDE courseware provided here with the status of open-
source software is produced under the EPL 1.0 license.

http://www.modelplex.org/
http://www.modelplex.org/

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 3

Outline

• Problems in software development
• Some consideration about distributed systems
• A first approach on behavioral modeling
• Introduction to Petri Nets
• Some formal definitions on Petri Nets
• Some properties of Petri Nets
• Component-based methodology for behavioral

modeling
• An industrial example (verified middleware)
• Some conclusions & perspectives

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 4

An introduction to 
behavioral modeling 

•Fabrice.Kordon@lip6.fr

•LIP6, Université P. & M. Curie,

•Paris, France

•Companion-site : http://fabrice.kordon.name/ufsm

http://fabrice.kordon.name/ufsm-compagnon

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 5

Objectives of the course

•Distributed computing is increasing

•Are we able to cope with increasing complexity of such systems?

•We need to specify systems more precisely

•From «boxes» to behavioral specification

•Behavioral modeling is important

•Simulation and testing are reaching limits

•There is a need for formal modeling

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 6

Contents of the course

Problems in software development
Some consideration about distributed systems
A first approach on behavioral modeling
Introduction to Petri Nets
Some formal definitions on Petri Nets
Some properties of Petri Nets
The modeling operation (methodological considerations)
Training

Use of a Petri Net environment: CPN-AMI
Three stages
• play with one example model
• model a simple system
• model a more complex system

Concluding remarks

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6

Problems in software development  
(especially for distributed systems)

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 8

Hardware versus software

• ”Hardware is, Software will”

• What is different between soft and hard?
 Hardware Software
 Faster
 Higher abstraction level
 Rigid

• Both may be unreliable
• Hardware: you die
• Software: you sell maintenance

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 9

Is software risky? (1)

Government Accounting Office (1979)
9 projects
$7 000 000

29%

19%
3% 2% 47% Payd/never used

payd/undelivered

reengineered, used
and dropped
reengineered and
used
used as is

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 10

Analysis on various project results in 1995 (The
Standish Group)

16,2%
Success

31,1% Partial
failure

52,7% Total
failure

Is software risky ? (2)

10

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 11

Why is software risky?

Observations
No standard (or a very few)
Maintenance/evolution problems
Very limited reuse

•Almost no method  
 
 
 
The difference S/H 
can be explained

Why hardware is better
High production costs
Thus, a need for big series
No way to correct a bugged chip

Hardware people have to be prudent

Software  suffers from its advantages

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 12

So
ur

ce
: I

.S
om

m
er

vi
lle

 ©
19

95

What is software

• A real product
• A “flexible” product
• Software production is not a «fully recognized»

engineering discipline (such as for building bridges or
buildings)

• There is no standard way to produce software
• Can it be standardized since it is «brain juice»?

• Most project lead to an «original product»
• Like an œuvre d'art

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 13

Observation 1: Correcting or introducing changes, compared costs

x2

x5

x10

x50

x20

Requirements Conception Coding Test &
integration Evaluation Maintenance

Re
la

tiv
e

co
st

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 14

Characteristics of maintenance/evolution

We observe
• Slow correction process

• Collect reports
• Analyze reports
• Fixing/changing stuff
• Installing a new version...

• Reduced teams
• There is no way to maintain large teams when the product is in production

• Less and less safety when delivery gets far
• Possible side effects of a fix/evolution... essentially for large software
• It may be difficult to reconsider some choices
• Limited memory from the design.

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 15

Intuitive vision of the  
«software life cycle»

Requirement
analysis

Functional
specs

Early design

Conception

Detailed
specs

Coding, unit
tests

Software
units
tests

Integration and
tests

Composed
units

The application
Tests

Installation,
deployment

Installation
procedures
Manuals

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 16

Observation 2 : DIstribution cost for an application

 Development of a complex appli-
cation corresponds to the

“emerged part” of an iceberg

12%

6%
12%

70%

Design
Coding
Tests
Maintenance

Perfective : 60,3%
Adaptative : 18,2%
Corrective : 17,4%

others : 4,1%

16

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 17

What about model driven engineering?

Development and Maintenance of industrial applications
Are more and more complex,
Technologies change rapidly,
New «social factors» (users) in such systems,
Can be sold in «temporal frames» that can be small.

«Software Chronic Crisis» (Gibbs, Scientific American)

$ 100.000.000.000 in 1996 (Source, Standish Group International)

Model driven engineering (prototyping)
IEEE : «A type of prototyping in which emphasis is placed on developping prototypes
early in the development process to permit early feedback and analysis in support of
the development process»

When systems are distributed,
this is even more complex!!!!!!

Traditional testing is inappropriate!

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6

Some consideration about distributed systems

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 19

Lehman’s Laws

Continuing change
A program that is used in a real-world environment must change,

or become progressively less useful in that environment.

Increasing complexity
As a program evolves, it becomes more complex, and extra

resources are needed to preserve and simplify its structure.
• Lehman and Belady, 1985

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 20

What’s wrong with OOP?

1. OOA and OOD are domain driven
Designs are based on domain objects, not available components
Objects end up with rich interfaces, not plug
CONCLUSION: Hard to reconfigure and adapt objects

2. Implicit Architecture
Source code exposes class hierarchy, not run-time architecture!
Objects are wired, not plugged together
How the objects are wired is distributed amongst the objects
CONCLUSION: Hard to understand and hard to evolve

3. Implicit Reuse Contracts
Idioms and patterns are hidden in the code
CONCLUSION: Steep learning curve for development and evolution

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 21

What about Components?

A software component is a unit of independent
deployment without state

We know how to build components!
We don’t understand how to compose flexible

applications from components.
We should be thinking more about composition than

about components

stable

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 22

What future for distributed systems?

Evolution of Distributed Systems is incredibly fast

We are just at the beginning of their existence

Todays solutions do not support «tomorrow’s needs»
Scaling up
P2P approach
Hight reliability

Problems with appropriate infrastructures?

Needs for a «new paradigm»?
We wait for about 27 years since OO-languages

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 23

A car = distributed system
Many processors
Specific interconnection network

How to handle configuration?
Task affectation
Redundancy

Example of future applications: automatic highway (1)

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 24

Reliability of interactions
Modeling problem (p2p)
Analysis using formal

methods
System must be

deterministic
Program generation

What you analyzed is
what you get

Fault tolerance problems
Unreachable cars = ???

Car out
Car away for a while
Ambient network

saturated

Example of future applications : automatic highway (2)

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 25

Example of future applications : automatic highway (3)

Large scale system
Lots of actors
Length of the system

Complex interoperability (p2p)
Car / car
Car / captors
Captors / management stations

Dynamic adaptation
Management policies
Handling of events
Traffic control
Configuration: cars get in and out

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 26

Needs for distributed systems

Two «classes» of customers (and needs)
Level 1: 

increase speed of development, integrate a know-how in tools
(need for productivity)

Telecom, home applications, …
Level 2: 

Increase the reliability of systems by using formal verification
techniques

«Mission-critical» and/or «high-confidence» systems

In both cases, there is a need for help in developing such
systems

Modeling, verification, model transformation, etc.

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 27

Why formal modeling behaviors of distributed systems?

Because they are complex to capture

Because we need to perform «automatic reasoning»
Detect bad behavior,
Ensure that some properties are preserved,
etc.

Modeling at a behavioral level is CRITICAL for distributed
systems

Especially when they become complex
Some studies of proposed solutions must be performed prior to

implementation

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6

A first approach on behavioral modeling

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 29

•Example: behavioral analysis
• Let us represent the execution of two processes...

Proc1->Proc2

P1

P2

Example of needs

No relationship

P1

P2

Proc1->S,R
Proc2->R,S

P1

P2

R

S

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 30

State space for a N-processes system...

Each process = one dimension for execution
Be aware of original things (dead-ends, etc.)

source : http://www.win.tue.nl/~fvham/fsm/index.html

http://www.win.tue.nl/~fvham/fsm/index.html

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 31

So, why modeling?

To study the complexity of applications (here, due to the
parallelism)

Communication
✓Between hosts
✓Between processes or threads

Concurrent access to resources
Synchronization
✓Rendez-vous,
✓Critical sections
✓Dedicated protocols

There are other interesting domains for such an analysis
Real-time
Embedded
Hybrid...

All these domains complexity  

generates very complex problems 

(combinatorial explosion)

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 32

•Objectives

Expected characteristics
• Easy modeling process Easy expression of properties
• Theoretical foundation CASE tools

Modeling

Real
system

System  
propertie

s
Transcripti

on

Model of  
the

system
Modelin

g

Model 
properti

es

Analysi
s

Tests
Simulatio

n

Three types of notations
Natural language, Rigorous, formals

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 33

Natural language (or any informal ones)

m
• Nice and easy to define but...

• Ambiguous (multiples interpretations)
• Incomplete (partial specification)
• Inconsistent
• Various level of description
• Contradictory

“Natural”
Strutured text, graphics...

Might be “standardized”
Flow diagrams,

Textual algorithms...

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 34

Rigorous languages

Conceptual
foundations

Propose a set of precise
concepts

Limited interpretation
Should prevent from any
ambiguous interpretation

Syntactically defined
A grammar is proposed

They support

m
• Execution (suitable description)

• Simple inconsistencies detection

• May support program generation

A few examples
m

SA-DT, SA-RT
HOOD, OMT, OOA

UML

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 35

Formal languages

Mathematical
foundations
unambigious

Support for formal
verification

Formal description of
interactions

They support

m
• Execution
• Evaluation of the specification

validity
• Detection of unconsistenties
• Verification of properties
• Program generation

A few examples
m

Z, B, VDM, Algebraic specifications,
State automata, Promela

Petri nets...Theorem proving
Model checking based
Structural analysis

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6

Introduction to Petri Nets

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 37

Formal methods: classification

Two types of formal methods
Algebraic based

The system is described by means of axioms
The property to be demonstrated is a theorem
Demonstration can be helped by a «theorem prover»
Characteristics
•supports infinite systems, parametric approach, difficult to automate

state-exploration based
Behavior of the system is described by means of a formal language
The property to be demonstrated is a formula (invariant, causal)
Demonstration is performed by building the state space of the system
Characteristics
•supports finite systems only, non parametric approach, easy to automate,

counter-example provided automatically

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 38

Petri Nets

Petri Nets approach is closer to model checking
State space generator...
 ... but properties can be deduced from its

structure

Families of Petri Nets
Place/Transition
Colored
Stochastic
Timed
Algebraic...

We will focus on «simple» Petri Nets: P/T

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 39

Elements in a Petri net

Petri nets = bipartite graph

A state transition model

Resources k Places
Evolution k Transitions
Evolution k Arcs + tokens (firing rule)

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 40

The firing rule

•Defines the behavior of the system

2

•P1

P2

P3

P4

P5
•

•

2

••

•

P1

P2

P3

P4

P5

2

 •P1

P2

P3

P4

P5

 •

 •
•

•

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 41

How to define the basics of distributed execution

Sequence Parallelism

Synchronous communication Asynchronous communication

P1 P2 P3T1 T2
•

T2T1 P3P2P1

P1' P2' P3'T1' T2'
••

•

P1a

P2a

P3a

T1a
Sync

T1b

P2b

P2b

P1b• • T2T1 P3P2P1

P1' P2' P3'T1' T2'

Buff

••

•

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 42

First example: 
two people waking up (1)

bathroom leave

outbath2

outbath1

inbath2

inbath1

goeat2

goeat1

wakeup2

wakeup1

ringing

gone2
ready2

washing2eating2awake2

gone1
ready1

washing1eating1awake1

noise2

noise1

sleep2

aclock

sleep1

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 43

First example: 
two people waking up (2)

bathroom leave

outbath2

outbath1

inbath2

inbath1

goeat2

goeat1

wakeup2

wakeup1

ringing

gone2
ready2

washing2eating2awake2

gone1
ready1

washing1eating1awake1

noise2

noise1

sleep2

aclock

sleep1

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 44

First example: 
two people waking up (3)

bathroom leave

outbath2

outbath1

inbath2

inbath1

goeat2

goeat1

wakeup2

wakeup1

ringing

gone2
ready2

washing2eating2awake2

gone1
ready1

washing1eating1awake1

noise2

noise1

sleep2

aclock

sleep1

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 45

First example: 
two people waking up (4)

bathroom leave

outbath2

outbath1

inbath2

inbath1

goeat2

goeat1

wakeup2

wakeup1

ringing

gone2
ready2

washing2eating2awake2

gone1
ready1

washing1eating1awake1

noise2

noise1

sleep2

aclock

sleep1

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 46

First example: 
two people waking up (5)

bathroom leave

outbath2

outbath1

inbath2

inbath1

goeat2

goeat1

wakeup2

wakeup1

ringing

gone2
ready2

washing2eating2awake2

gone1
ready1

washing1eating1awake1

noise2

noise1

sleep2

aclock

sleep1

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 47

First example: 
two people waking up (6)

bathroom leave

outbath2

outbath1

inbath2

inbath1

goeat2

goeat1

wakeup2

wakeup1

ringing

gone2
ready2

washing2eating2awake2

gone1
ready1

washing1eating1awake1

noise2

noise1

sleep2

aclock

sleep1

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 48

First example: 
two people waking up (7)

bathroom leave

outbath2

outbath1

inbath2

inbath1

goeat2

goeat1

wakeup2

wakeup1

ringing

gone2
ready2

washing2eating2awake2

gone1
ready1

washing1eating1awake1

noise2

noise1

sleep2

aclock

sleep1

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 49

First example: 
two people waking up (8)

bathroom leave

outbath2

outbath1

inbath2

inbath1

goeat2

goeat1

wakeup2

wakeup1

ringing

gone2
ready2

washing2eating2awake2

gone1
ready1

washing1eating1awake1

noise2

noise1

sleep2

aclock

sleep1

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 50

First example: 
two people waking up (9)

bathroom leave

outbath2

outbath1

inbath2

inbath1

goeat2

goeat1

wakeup2

wakeup1

ringing

gone2
ready2

washing2eating2awake2

gone1
ready1

washing1eating1awake1

noise2

noise1

sleep2

aclock

sleep1

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 51

First example: 
two people waking up (10)

bathroom leave

outbath2

outbath1

inbath2

inbath1

goeat2

goeat1

wakeup2

wakeup1

ringing

gone2
ready2

washing2eating2awake2

gone1
ready1

washing1eating1awake1

noise2

noise1

sleep2

aclock

sleep1

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 52

First example: 
two people waking up (11)

bathroom leave

outbath2

outbath1

inbath2

inbath1

goeat2

goeat1

wakeup2

wakeup1

ringing

gone2
ready2

washing2eating2awake2

gone1
ready1

washing1eating1awake1

noise2

noise1

sleep2

aclock

sleep1

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 53

The state space for this model

 awake2: <..>
 washing1: <..>

 noise2: <..>
 bathroom: <..>
 sleep2: <..>
 ready1: <..>

 aclock: <..>
 bathroom: <..>
 sleep2: <..>
 sleep1: <..>

 bathroom: <..>
 ready2: <..>
 awake1: <..>

 noise2: <..>
 noise1: <..>
 bathroom: <..>
 sleep2: <..>
 sleep1: <..>

 washing2: <..>
 eating1: <..>

 noise1: <..>
 bathroom: <..>
 awake2: <..>
 sleep1: <..>

 eating2: <..>
 washing1: <..>

 noise2: <..>
 bathroom: <..>
 sleep2: <..>
 awake1: <..>

 bathroom: <..>
 awake2: <..>
 ready1: <..>

 noise1: <..>
 bathroom: <..>
 eating2: <..>
 sleep1: <..>

 bathroom: <..>
 ready2: <..>
 eating1: <..>

 bathroom: <..>
 awake2: <..>
 awake1: <..>

 bathroom: <..>
 eating2: <..>
 ready1: <..>

 noise2: <..>
 bathroom: <..>
 sleep2: <..>
 eating1: <..>

 ready2: <..>
 washing1: <..>

 noise1: <..>
 washing2: <..>
 sleep1: <..>

 washing2: <..>
 ready1: <..>

 bathroom: <..>
 eating2: <..>
 awake1: <..>

 bathroom: <..>
 ready2: <..>
 ready1: <..>

 bathroom: <..>
 awake2: <..>
 eating1: <..>

 bathroom: <..>
 gone2: <..>
 gone1: <..>

 noise2: <..>
 sleep2: <..>
 washing1: <..>

 noise1: <..>
 bathroom: <..>
 ready2: <..>
 sleep1: <..>

 washing2: <..>
 awake1: <..>

 bathroom: <..>
 eating2: <..>
 eating1: <..>

inbath2

inbath1

wakeup1

inbath1

goeat2

wakeup2

goeat2

goeat1

rings

outbath1

inbath2

outbath2

wakeup1

goeat1

outbath2

wakeup2

inbath1

outbath1

wakeup2

goeat2

goeat1

inbath1

goeat2

inbath2

wakeup1

goeat1

inbath2

outbath2

goeat1

leave

wakeup1

wakeup2

outbath2

outbath1

wakeup1

outbath1

wakeup2

goeat2

Expresses all possible behavior  
in the system

26 states
38 arcs

One state
Integer vector representing  

marking of places

Expresses indeterminism  
of a parallel execution

Interleaving of actions

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 54

Building the state space 
(also called reachability graph)

It is important to relate the network with its reachability graph
Representation of a state as a vector of place marking

p1 P2 P3 P4 P5

•

•
••

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6

Some formal definitions  
on Petri Nets

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 56

What is a Petri Net

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 57

Initial marking, example

Initial marking

Remind, each state in the state space is represented using a
vector of places

P1 P2 P3

P4 P5

t4 t5t1 t2

t3

32
3

2

2
6
3

3

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 58

Firing a transition

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 59

«Firability» of a transition, example

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 60

Firing a transition, example (1)

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 61

Firing a transition, example (2)

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 62

Firing sequence

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 63

Firing sequence, example

 t2 t4 t3 is a firing sequence from

P1 P2 P3

P4 P5

t4 t5t1 t2

t3

32
3

2

2
6
3

3

••• ••••••

••••••

• ••••

•••

•

•••••• ••

•

•••

•

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 64

Incidence matrix

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 65

Reachability Graph 
(state space for the system)

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 66

Sample algorithm  
to build the state space

Easy to understand...

... but inefficient for large systems if programmed as is

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 67

Some remarks on the reachability graph

The generated state space (reachability graph) is
related to both

 PN
 M0

A state space can be infinite
A finite state space may contains infinite sequences

 P3: <..>

 P2: <..>

 P1: <..>

t1 t2

t3t2

t3

t1

P3

P2

P1 1

P1 1

P2

t1

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6

Some properties of Petri Nets

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 69

Type of properties

Behavioral properties
Verification of a formula on the associated state space
•Need to deploy the reachability graph
Two types of behavioral properties
•Safety (formula to be verified by all states)  

 use of formula on states or on transitions
•Causal (relation between two or more states)  

 use of temporal logic

Structural properties
Related to the structure of the specification
•No need to compute the reachability graph
The correspond to patterns in the reachability graph

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 70

Model checking and temporal logic

Temporal ≠ timed management
Causality between two actions
Set up «good» relationship between critical events in the system

Safety
Search for a given state configuration

Temporal
Operators
• possible in the future, always in the future, 

eventually
Atomic properies
• safety-like formulæ

Several temporal logic
CTL (computation tree logic)
LTL (linear time logic)
CTL* (both)

CTL*

useful to check for specific states (safety) or causal
properties (temporal formulæ)

CTL LTL

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 71

Pondered marking over a set of places = constant (depends on the
initial marking)

This formula is verified all over the reachability graph

On the example:
2*p2 + 2*p3 + 2*p4 + p1
p5

Place invariants

•

•
••

t4
<2,1,0,0,1>

t1

<0,1,1,0,1>

t2

t4

t4

t3

t2

t2 t1

t3
t1

t3

t3

<2,0,1,0,1>

<2,0,0,1,1>

<0,0,1,1,1>

<0,0,0,2,1>

<0,0,2,0,1>

<0,1,0,1,1>

useful to check for sequences (threads) or to verify mutual
exclusion

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 72

Transition invariants

Stationary sequence (when it can be fired)

In the example:
t4 useful to check for

expected ciclic behavior

•

•
••

t4
<2,1,0,0,1>

t1

<0,1,1,0,1>

t2

t4

t4

t3

t2

t2 t1

t3
t1

t3

t3

<2,0,1,0,1>

<2,0,0,1,1>

<0,0,1,1,1>

<0,0,0,2,1>

<0,0,2,0,1>

<0,1,0,1,1>

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 73

Structural bounds

Min/Max number of token in a place
WARNING: structural means may never be reached
Depends on the initial state of the system

On the example:
p2 : [0 ... 1]
p3 : [0 ... 2]
p4 : [0 ... 2]
p1 : [0 ... 2]
p5 : [1 ... 1]

useful to check for communication bounds and feasibility of
model checking

•

•
••

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6

Component-based methodology for behavioral
modeling

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 75

Modeling strategy

Model = «story»
How to build the model (what abstraction level, what choices)
The story relies on components (execution sequences, threads, etc.)
The story brings modeling hypotheses

Thus, there are «expected properties»
«Good questions » must be raised for a given specification

Typical example: structural properties (several use)
To check the design
•Such properties should be there (otherwise, things could be wrong)

Then, to verify the model
•Properties dedicated to the expected properties

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 76

Modeling and verification process

The process
Evaluate what do you want to model (1)
Evaluate what properties do you want to verify (2)
Select your abstractions (according to 1 and 2)
Design your model
Check for «expected properties» (from the story)
Verify the model’s properties

Such a process may seems complex for «simple» models
It is the only way to avoid waste of time for larger ones

For larger models, it is necessary to combine with modularity
Then, the process is refined at each level
• The process is applied for each module - local verification
• Assemblage is then performed
• The process is then applied for the entire module

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 77

Module interactions

Basic interactions
Channel place asynchronous
Shared transition synchronous

More elaborated
Subnets with specific behavior assembled using basic interactions

But sophisticated interaction can be resumed to the basic ones
Sophisticated interaction is seen as a component (glue in the previous slide)

Advantage:
Keep on canonical mechanisms
Encapsulation of high level mechanisms (UML?)
Preservation of some properties (under certain conditions)

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 78

Channel places - place fusion

Preserved properties
P-invariants may be found (or

composed) in the resulted
model

•Under certain configuration...
•This is useful to keep tracking

the «expected properties»

call

back

back

call

back

call

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 79

Remark
P-invariants of the

resulting model are a
superset of the union of
component’s invariants

•Under certain conditions

Tsync

Transition Fusion

Tsync Tsync

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 80

Modularity and basic interactions

Objective: manage large applications

Glue Glueinterface interface interface interface

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 81

Applying the process to a simple example

Modeling two simple CORBA components
A client
A server
Both cooperate to send/receive requests

Client host

Client

Stub

Server host

Server

Skeleton

Network

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 82

Modeling and assembling the client side

Client Stub

Network

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 83

Client side: assembled

Network

Network

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 84

Server side (same approach)

Network

Network

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 85

Assembling (higher level)

Network

Network

Network

Network

empty = fusion of the interfaces

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 86

The network

Assembling (higher level)

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 87

Controls at every stage

For the client

For the client stub

?

For assembled Client
local communication loop

For the server and stub
and assembled server side

As for the client and client
stub!

For the whole system
the computed ones
and some related to

communication

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 88

The invariants (from CPN-AMI)

Expected invariants

New invariants

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 89

Elements of analysis (from CPN-AMI)

 SSs1: <..>
 CSs1: <..>
 Ss2: <..>
 Cs1: <..>

 SSs1: <..>
 CSs1: <..>
 Ss1: <..>
 Cs2: <..>

 SSs1: <..>
 CSs1: <..>
 Ss2: <..>
 Cs2: <..>

 Lc2: <..>
 SSs1: <..>
 CSs1: <..>
 Ss1: <..>
 Csw: <..>

 Back: <..>
 SSs1: <..>
 CSs2: <..>
 Ss1: <..>
 Csw: <..>

 Lc2: <..>
 SSs1: <..>
 CSs1: <..>
 Ss2: <..>
 Csw: <..>

 Ls2: <..>
 SSs2: <..>
 CSs2: <..>
 Ss1: <..>
 Csw: <..>

 Back: <..>
 SSs1: <..>
 CSs2: <..>
 Ss2: <..>
 Csw: <..>

 Ls2: <..>
 SSs2: <..>
 CSs2: <..>
 Ss2: <..>
 Csw: <..>

 SSs2: <..>
 CSs2: <..>
 Ssw: <..>
 Csw: <..>

 Ls1: <..>
 SSs2: <..>
 CSs2: <..>
 Ss1: <..>
 Csw: <..>

 Msg: <..>
 SSs1: <..>
 CSs2: <..>
 Ss1: <..>
 Csw: <..>

 Lc1: <..>
 SSs1: <..>
 CSs1: <..>
 Ss1: <..>
 Csw: <..>

 Ls1: <..>
 SSs2: <..>
 CSs2: <..>
 Ss2: <..>
 Csw: <..>

 SSs1: <..>
 CSs1: <..>
 Ss1: <..>
 Cs1: <..>

 Msg: <..>
 SSs1: <..>
 CSs2: <..>
 Ss2: <..>
 Csw: <..>

 Lc1: <..>
 SSs1: <..>
 CSs1: <..>
 Ss2: <..>
 Csw: <..>

SCget

Cget

Selse Celse

Ccall

Celse

SCall

Selse

SScall

Ccall

Scall

SCall

Sret

Selse

SSret

SScall

Selse

Selse

SCget

Selse

Selse SSret

Selse

Cget

17 nodes and 24
arcs

Good properties
No deadlock (loop)
Protocol without

loss
•Safe network

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 90

The new network

Variation?

loss2

loss1

Cs11

Csw

Cs2

Ccall

Cget

Celse Selse

Sret

Scall

Ss2

Ssw

Ss1 1

SCall

CSs2

SCget SSret

SSs2

SScall

CSs1 1 SSs11

Msg

Back

Lc1

Lc2 Ls2

Ls1

New strategies
should be

considered

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6

An industrial example (verified middleware)

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 92

µbroker for

Libraries

Services

Similar to a scheduler in
an operating system

Introduction: what is PolyORB

Schizophrenic middleware
Experience gained on a middleware architecture
A very generic middleware + can be verified
http://www.polyorb.eu.org

What is PolyORB’s global architecture

«neutral» core layer (reused)

API (applicative)

API (protocol)

•••

•••

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 93

µBroker’s structure

Split the specification
Environment: represents identified and

required behavior only
System: represents the implemented

solution according to expected properties
Environment

Behavior, Sources (how many)
Events

System
Store incoming events (to be processed)

• Choice of a store policy (FIFO,
priority, etc.)

Execution Core
• Choice of a strategy

• No tasking
• Leader/Follower
• Half-sync/Hald-async,
• etc.

Event Storage

Execution Core

Sources & Events

Environm
ent

The system

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 94

Sources & events : interface

Reg_Source_B Reg_Source_E

Chk_Source_EChk_Source_B

Ureg_Source_B Ureg_Source_E

 Abrt_Csk_Src_EAbrt_Csk_Src_B

Sources & Events
ModifiedSRC

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 95

Sources & events: hypotheses and implementation

Hypotheses:
Sources are statically declared (number of sources remains constant in a

configuration)
Modeling choice: recycling of events in the model

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 96

Structuring the System Core

Dispatching of actions
Fetch/Decode and Execute
Similar to a micro-processor

Event storage between the leader
thread and the follower ones

Using the storage component

A scheduler must choose the
thread to be executed (if
multithreaded policy)

Several possible implementations
No tasking
Leader Follower
others not experienced yet

fetch/decode

execute

SchedulerStorage

src/evt

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 97

µBroker, a first model (no-tasking = mono-threaded)

Threads

Try_Check_Sources_B
Threads

Try_Check_Sources_E
Threads

cJobCnt
10

JobCnt

Schedule_Task_B
Threads

<Threads.all>

DummyOR2DummyOR1

D1
Perform_Work_B

Run

Threads
Perform_Work_E

MustCheck

Threads

NoJob

JobExist

Threads

WillPerformWork

Class
 Jobs is 0..4;
 Sources is 1..4;
 Threads is 1..1;
Domain
 D1 is <Threads, Jobs>;
 D4 is <Threads, Sources>;
 D6 is <Jobs, Sources>;
Var
 j in Jobs;
 j1, j2, j3, j4, j5, j6, j7, j8, j9, j10 in Jobs;
 s in Sources;
 s2 in Sources;
 ms1, ms2, ms3, ms4, ms5, ms6, ms7, ms8, ms9, ms10 in Sources;
 t in Threads;
 t2 in Threads;

Threads
Check_Sources_B

Check_Sources_E
Threads

IsEvt

AvailableJobId
Jobs

<Jobs.all>

D4

CreatedJobs
D6

cSources
10

EnterCSTCS

ModifiedSrc
Sources

Threads

LeaveCSTCS

Threads

Threads Threads Threads Threads

NotifyEventEndOfCheckSources

NotifyEventEndOfCheckSourcesB
Threads

NotifyEventEndOfCheckSourcesE
Threads

NotifyEventJobQueuedB
D1

NotifyEventJobQueuedE
Threads

QueueJobB
D1

FetchJobB
Threads

FetchJobE
D1

<t>

<t,j>

<t>

<t,j>

<t>

<t,j>

<j,s>
<t><t><t><t>

<t,j>

<t,j>
<j,s>

<j>

<t,ms1> <t,ms1>+<t,ms2><t,ms1>+<t,ms2>+<t,ms3><t,ms1>+<t,ms2>+<t,ms3>+<t,ms4>

<t><t><t><t>

432

<t,s>

9 8 7 6

<t>

<ms1>+<ms2>+<ms3>+<ms4><ms1>+<ms2>+<ms3>
<ms1>+<ms2><ms1>

<t><t><t><t>

<t><t><t><t>

<t> 2*<t> 3*<t> 4*<t>

<t>

<t>

<t>

<t>

<t>

10 10 10 10

<t>

<t>

<t>

<t>

<t>

<t>

<t>

<t>

<t>

<t,j>

<t>

<t><t>

<t>

10
10

<t>

<t>

<t>

<j>

<t,ms1>+<t,ms2>+<t,ms3>+<t,ms4>+<t,ms5>

5

5

<ms1>+<ms2>+<ms3>+<ms4>+<ms5>

<t>

<t>

5*<t>

10

<t>

<t>

Fetch/decode

Execute

no scheduler

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 98

QuickTime™ et un
décompresseur

sont requis pour visionner cette image.

µBroker, a new model (for fun!): FIFO+multithread (leader/follower)

storage

Sources
&

Events
exec

scheduler
• 89 places

• 72 transitions

• 289 arcs

fetch/decode

Parameters
Smax
•# of sources

•Tmax

•# of threads

•Bsize
•FIFO size

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 99

Properties

P0
symmetries : threads and sources are not ordered

P0 is a preliminary property
Enables the use of symmetries and generation of the symbolic reachability graph

P1
No deadlock: the system never blocks

P2
FIFO management: no possible attempt to insert an event twice in the same

FIFO slot
P3

No starvation: Any incoming event will be processed

Such a model can be analyzed with appropriate tools!!!
AND UNDER APPROPRIATE CONDITIONS

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 100

About the appropriate conditions... 
First view at the event-storage component

• Component’s interface

NullJob

Jobs
<0>

JobList
D2

QueueJobB
D1

InCnt
Counter

<1>QueueAJob

OutCnt
Counter<1>

FetchJobE
D1

FetchJobB
Threads

[x=y]
FetchAJobEmpty

MAX_Jobs
10 QueueJobE

Threads

<t, j> <t,j>

<t> <t>

10

10

<t>

<y>

<y++1>

<x++1>

<j,x>

<x>

<j,x>

<t,j>

<j>

<j>

Stockage 
des événements en attente

QueueJobB QueueJobE

FetchJobEFetchJobB

Component’s implementation

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 101

unfolding of the previous net

FetchJobE

D1

FetchJobB

Threads

QueueJobE
Threads

QueueJobB
D1

fi3

Jobs
f3

fo3

mo3mo2
1mo1

fo2fo1

Jobs
f2

Jobs
f1

mi3mi2 fi2fi1
1

mi1 fi4

Jobs
f4

fo4

mi4

mo4

fi5

Jobs
f5

fo5

mo5

mi5

<t,j>

<t>
<j>

<j>

<t>

<t,j>

<t,j>

<t>
<j>

<j>

<t>

<t,j>

<j>

<j>

<j><j>

<j><j>

<t,j><t,j><t,j>

<t><t><t>

<t><t><t>

<t,j><t,j><t,j>

Optimized view 
at the event-storage component

• Component’s interface

Stockage 
des événements en attente

QueueJobB QueueJobE

FetchJobEFetchJobB

Component’s implementation (5 slots)

Changing the implementation does not raise any problem
This implementations does not destroy the symmetry (P0 is verified)

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 102

Benchmarks: State space size

Smax = 5, Bsize = 5, Tmax Varies

1,E+00

1,E+02

1,E+04

1,E+06

1,E+08

1,E+10

1,E+12

1,E+14

1,E+16

1,E+18

2 4 6 8 10 12 14 16

Etats conc.
Gph quotient
Gain

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 103

Benchmarks: execution time for

0

50000

100000

150000

200000

250000

300000

350000

1
so

ur
ce

2
so

ur
ce

s

3
so

ur
ce

s

4
so

ur
ce

s

symbolic
SSP

Execution time to produce the full state
space (mono-processor)

For P3, number of visited states
(due to an asymmetry)

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Experiences in parallel model checking
(less than one hour for 17 threads on a 22

bi-processor nodes cluster)

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6

Some conclusions and perspectives

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 105

Conclusion

It is possible to use Petri Nets for the verification of very complex systems
This was performed using CPN-AMI («around version 3.0»)
But everything was done «by hand»

There is a need for appropriate tools if ones want to manage large
specifications

Usable by engineers
Connected to standards?

• Is UML OK? How to make it usable?
• Already experienced: Torino, Hamburg, etc.
• LfP : an UML profile (RNTL-MORSE project)

So far what has been introduced in CPN-AMI
PetriScript: a language to generate Petri Nets

• Constructors
• Operators (merge, fusion, manipulation of sets of places or transitions)

New optimization techniques for model checking
• Use of the Petri Net’s structure (the SPIN community has a similar strategy)
• Use of new compact representations...

http://www.lip6.fr/cpn-ami

http://www.lip6.fr/cpn-ami

Behavioral modeling with Petri Nets for Verification

© 2008 LIP6 106

Perspectives

The industry is interested
Critical systems

There is a need to manage time and/or performances too
Even for distributed systems

Relation to implementation
Possible is specific cases (such as PolyORB)
However, this is a challenge (MDA, Prototyping)

New experiences to be done with the new developed tools
More with PolyORB
• Verification of a given configuration
• Integration in the Production process

Intelligent Transports Systems
• Validate strategies at an early stage of the design

