Blockchains for Trusted IoT

Didier Donsez, Vivien Quéma Univ. Grenoble Alpes LIG

Outline

- Blockchain : a short state-of-the art
- Blockchain : IoT use cases
- Our work on Blockchains

Blockchain: a short state-of-the-art

What is a Blockchain?

- Append-only Distributed Database...
 - Irrevocable
 - Trustless (or not)
- ... in which transactions (or anything else) can be stored
- Main metrics
 - Throughput
 - Latency
 - Cost
- This is also called "Distributed Ledger Technology" (DLT)

Some Blockchains...

• Bitcoin

• Ethereum

• Hyperledger

Blockchain use cases

https://www-05.ibm.com/hr/watson-see-summit/assets/files/IBM_RD_perspective-_innovation_is_what_make s_the_difference_-_Dr_Marko_Vukolic_IBM_Research.pdf

The many faces of Blockchains (1/2)

- Public blockchain
- Consortium/Federated blockchain
- Private blockchain
- Blockchain-as-a-Service

The many faces of Blockchains (2/2)

credit : M.A. Lopez

5 factors to choose the right Blockchain

Five Factors in Determining a Good Business Case With DLTs Source: Aite Group

Throughput	Latency	Node scalability	Security	Cost
I II	0			S
Volume of transactions the DLT is able to process (tps)	How long the DLT takes to confirm and commit each transaction	How many nodes the DLT supports without compromising performance	How resilient the DLT system is to various security threats	How much it costs to build and run a DLT system
 Bitcoin protocol has an extremely low throughput of 7 tps Many DLTs have made significant progress on throughput, ranging from 500 tps to 5,000 tps 	 Bitcoin protocol takes 10 minutes on average to validate transactions Private DLTs running on a consensus algorithm without mining can provide subsecond latency levels 	 Bitcoin protocol is the most scalable DLT in number of validation nodes Private DLTs provide sufficient client-node scalability but with limited validation- node scalability 	•The security aspects are fundamentally impacted by the consensus algorithms -Client onboarding -Digital signatures -Network attacks -Data privacy -Governance control -Legal enforcement	 Running cost: Cost per confirmed transactions (CPCT) Building cost: capital investment in hardware and equipment, software development and licensing, and IT staffing

https://www.aitegroup.com/report/building-business-cases-distributed-ledger-technology-things-know

How does a Blockchain work?

How does a Blockchain work?

Permissionless validation (Proof of Work)

- Everyone (Miner) can participate to the validation
 - Slow (and huge amont of electricity)
 - Scalability

Bitmain. credit Stephen Chow

Permissioned validation (Byzantine consensus)

- Only authenticated and permissioned validators
 participate to the validation
 - Fast
 - Limited scalability

A word on Smart Contracts

- Program (Turing Complete) executing the terms of a contract between 2 or more participants
 - Same as a Stored Procedure in SQL Databases.
 - Basic contract : exchange X assets A (owned by Alice) for Y assets B (owned by Bob).
 - Assets: money (ether), token, kW, km, man-hour, weather forecast, licence key, property title ...

- Smart Contract Execution
 - Replicated State Machine
 - on several computing nodes
 - New state recorded in the Distributed Ledger.

Smart Contracts : simple to complex

Smart contracts – simple to complex

Use case examples

© PWC/ how Blockchain works

Smart Contracts platforms

- Ethereum Smart Contracts
 - Ethereum Virtual Machine (EVM)
 - Serpent (Python), Solidity (Node) ...
 - EtherScripter

Example : Vote registry with EtherScripter

- Hyperledger Chaincodes
 - Go, Java

Blockchain: IoT use cases

IoT systems over the years

2000 Centralized & monolythic IoT infrastructures **Today** Cloud-based & Shared IoT infrastructures Tomorrow (2025) Peer-to-Peer IoT infrastructures

Blockchain applications in IoT systems

• Assets

- Device (Endpoints, Gateways)
- Additional services in the device
- Measurements & Events from sensors (Data)
- Actions on actuators (Command)

Applications

- Securing event loggings
- Monetization of IoT Data (stream)
- Device Identity
- Device Property Titles
- Firmware update
- Locking/Unlocking services on Devices
- Supply chain traceability
- Privacy preserving
- D2D smart contracts
- Micro-transactions (EV charging, Open energy market)
- Maintenance tracking and warranties
- o ...

Some loT use cases

- Sensing-as-a-Service
- Supply chain traceability
- Electric vehicle charging
- Open energy market (Microgrid)

Use case 1 : Sensing-as-a-service (S2AAS)

- securing the sensors data streams
 - Each new data is appended to the ledger (aka irrevocable time-serie DB)
- monetize sensors data streams
 - sensors are owned (and maintained) by companies and individuals
 - customers are companies, research centers, ...
 - sensors are weather station, air quality, self quantified wearables, ...

• Example: datum.iota.org

Use case 2: Supply chain traceability

- Current : EPC Global (GS1)
 - Centralized objects registry and event databases (EPCIS and ONS)
- Tracking containers and parcels
 - a) Log the events (RFID, GPS, Beacon) into the ledger
 - b) Trig the excution of smart contacts on events

https://mycourses.aalto.fi/pluginfile.php/378344/mod_resou rce/content/1/Christidis%20and%20Devetsikiotis.pdf

Example : Mojix's ViZix blockchain (compliant EPCIS)

Use case 3: Open energy market

Microgrid energy productions

- Rooftop photovoltaic panels
 US \$30 billion in 2016 (grow 11% over 6 years)
- Residential energy storage systems
 95 MW in 2016 to 3700 MW by 2025

Application

• Individuals can sell stored and solar electricity to neighbours

Examples

- lo3energy.com (DLT is Hyperledger Fabric)
- SolarCoin.org (Join Ethereum Alliance)

https://spectrum.ieee.org/computing/networks/blockchains-will-allow-rooftop-solar-energy-trading-for-fun-and-profit

Use case 4: Electric vehicle charging

- EV problems
 - Lack of EV charging infrastructure
 - Complex charging contracts
- Applications
 - Share EV chargers
 - Micro payment for charging the EV
- Next step
 - Autonomous car
 - Drones
- Example
 - Share&Charge
 - BlockCharge

¹⁾ Detailed concept and specifications to be published by IOTA foundation soon

© Copyright innogy Innovation GmbH

Emerging actors

- Consortiums
 - Trusted IoT Alliance
- Startups
 - IOTA
 - Slock.it
 - HAPI
 - Lo3energy
 - Filament
 - Chimera-inc
 - \circ SolarCoin
 - Mojix
 - o ...

Our work on Blockchains

Motivations

• Designing consensus protocols for permissioned blockchains

- With the following goals:
 - Versatility (Abstract framework)
 - Robustness (RBFT)
 - Efficiency, geo-replication (XFT)
 - Privacy (PAG)

Abstract framework

- "The Next 700 BFT Protocols"
 - Published in EuroSys 2010 and ACM TOCS 2015
 - Joint work with EPFL and IBM Research

Contributions

- Allows designing versatile BFT protocols: latency efficient, throughput efficient, robust protocols, ...
- The paper describes two algorithms:
 - Quorum: latency optimal
 - Chain: the best throughput
- The concepts of Abstract are leveraged in Hyperledger Fabric

RBFT

- "RBFT: Redundant Byzantine Fault Tolerance"
 - Published in ICDCS 2013
 - Collaboration with CNRS Liris Lab

- Contribution
 - The most robust BFT protocol

• Used in Hyperledger Indy

XFT

- "XFT: Practical Fault Tolerance Beyond Crashes"
 - Published in OSDI 2016
 - Joint work with Eurecom and IBM Research

Contributions

- A novel approach to building reliable and secure distributed systems (considering network and machine faults independently)
- XPaxos: a consensus protocol that tolerates Byzantine failures at the price of standard failures
- XFT is currently being integrated in Hyperledger Fabric

PAG

- "PAG: Private and Accountable Gossip"
 - Published in ICDCS 2016
 - Joint work with CNRS Liris Lab

- Contribution
 - The first accountable, privacy-preserving gossip protocol
- Ongoing work on the use of PAG in algorithms such as SPECTRE

Future work

Goal: being able to use permissioned blockchains at the Edge of IoT networks

How: by designing algorithms for large-scale permissioned blockchains

Thank you!