

Choose certainty. Add value.

Virtual Homologation of Software-Intensive Safety Systems: From ESC to Automated Driving

Dr. Houssem Abdellatif Global Head Autonomous Driving & ADAS TÜV SÜD Auto Service

Christian Gnandt Lead Engineer Virtual Methods TÜV SÜD Auto Service

Definition

Homologation refers to the certification process of a product (vehicle) granting that it complies with all local standards and legal regulations such as safety and environmental regulation.

No homologation \rightarrow No CoC \rightarrow No sales

Self certification vs. type approval 3rd party principle

European Union: Directive 2007/46/EC Type approval, tests are based on United Nations Economic Commission for Europe (UN/ECE) procedures;

- North America: Federal Motor Vehicle Safety Standards (FMVSS) regulations released by the NHTSA;
- Australian Design Rules (ADR) regulations;

•

- Japan follows UN/ECE regulations and their own Test Requirements and Instructions for Automobile Standards (TRIAS) regulations;
- Other countries that accept or base their own regulation on those mentioned above, following the latest release or previous versions of the regulations.

Using simulation in vehicle development and testing

		Type Approval		Virtual homologation?
System		Application Whole vehicle test		Driving simulator
Subsystem	ę	subsystem integration tests		Test benches / HiL
Components	cor	nponent integration tests		HiL
Software	Softwa	SW/HW Tests Software integration tests		SiL / MiL
	 Software unit tests			

Simulation is used at different testing levels through the development cycle

- Software in the loop
- Model in the loop
- Hardware in the loop
- Vehicle in the loop
- Driving simulators

Can Simulation be used in the homologation process?

How would an approach looks like?

Motivation for simulation (virtual methods) in homologation

- Vehicle variant complexity
- Increasing active systems
- System complexity

- Huge testing parameter space
- not reasonably coverable by physical testing
- Limitation of physical testing

Highly relevant for ADAS and for automated driving

Source: Requirements on tools for assessment and validation of assisted and automated driving systems, Udo Steininger, TÜV SÜD Auto Service, Dr. Hans-Peter Schöner, Daimler, Dr. Mark Schiementz, BMW

ECE-R 140 allows for simulation methods to support the homologation of electronic stability control systems (ESC)

Core Elements of the Simulation Aided ESC Homologation Process

How portable is the approach to highly automated driving?

Vehicle parameter variation is sufficient

- principle of homologation remains the same
- new parameter dimensions
- Exploding number of testing parameters and parameter combinations
- Uncertainties increase
- Consequences are more severe
- \rightarrow Scalable and flexible homologation
- → Simulation aided/supported homologation for HAD functions

Vehicle parameter & situation variation are necessary

> How to bring the virtual vehicle in the virtual test track (simulation)?

Homologation is about (concept/functionality/principle) verification, but witch kind?

Choose certainty. Add value.

Thanks for your attention!

Christian Gnandt

Lead Engineer Virtual Methods

TÜV SÜD Auto Service Daimlerstraße 11, 85748 Garching Germany

Christian.Gnandt@tuev-sued.de